DOI QR코드

DOI QR Code

Application of Iron Related Magnetic Resonance Imaging in the Neurological Disorders

신경계 질환에서 철 관련 자기공명영상 기법의 활용

  • Kim, Tae-Hyoung (Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology) ;
  • Lee, Jae-Hyeok (Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology)
  • 김태형 (양산부산대학교병원 신경과, 의생명연구소) ;
  • 이재혁 (양산부산대학교병원 신경과, 의생명연구소)
  • Received : 2014.06.05
  • Accepted : 2014.06.13
  • Published : 2014.06.30

Abstract

Iron is an important element for brain oxygen transport, myelination, DNA synthesis and neurotransmission. However, excessive iron can generate reactive oxygen species and contribute neurotoxicity. Although brain iron deposition is the natural process with normal aging, excessive iron accumulation is also observed in various neurological disorders such as neurodegeneration with brain iron accumulation, Parkinson's disease, Alzheimer's disease, multiple sclerosis, Friedreich ataxia, and others. Magnetic resonance image (MRI) is a useful method for detecting iron deposits in the brain. It can be a powerful tool for diagnosis and monitoring, while furthering our understanding of the role of iron in the pathophysiology of a disease. In this review, we will introduce the mechanism of iron toxicity and the basics of several iron-related MRI techniques. Also, we will summarize the previous results concerning the clinical application of such MR imagings in various neurological disorders.

Keywords

References

  1. Crichton RR, Dexter DT, Ward RJ. Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm 2011;118:301-314. https://doi.org/10.1007/s00702-010-0470-z
  2. Benarroch EE. Brain iron homeostasis and neurodegenerative disease. Neurology 2009;72:1436-1440. https://doi.org/10.1212/WNL.0b013e3181a26b30
  3. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 2004;101:9843-9848. https://doi.org/10.1073/pnas.0403495101
  4. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004;5:863-873. https://doi.org/10.1038/nrn1537
  5. Gutteridge JM. Iron and oxygen radicals in brain. Ann Neurol 1992;32 Suppl:S16-21. https://doi.org/10.1002/ana.410320705
  6. Stankiewicz J, Panter SS, Neema M, Arora A, Batt CE, Bakshi R. Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 2007;4:371-386. https://doi.org/10.1016/j.nurt.2007.05.006
  7. van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur J Radiol 2013;82:708-718. https://doi.org/10.1016/j.ejrad.2011.07.007
  8. Sian-Hülsmann J, Mandel S, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem 2011;118:939-957. https://doi.org/10.1111/j.1471-4159.2010.07132.x
  9. Schenck JF. Magnetic resonance imaging of brain iron. J Neurol Sci 2003;207:99-102. https://doi.org/10.1016/S0022-510X(02)00431-8
  10. Westbrook C, Roth CK, Talbot J. MRI in practice. 4th ed. Chichester: Wiley-Blackwell, 2011;21-34.
  11. Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 1999;210:759-767. https://doi.org/10.1148/radiology.210.3.r99fe41759
  12. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-72. https://doi.org/10.1148/radiol.2522081399
  13. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462. https://doi.org/10.1148/radiol.10100495
  14. Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1-25. https://doi.org/10.1016/j.mri.2004.10.001
  15. Bartzokis G, Aravagiri M, Oldendorf WH, Mintz J, Marder SR. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn Reson Med 1993;29:459-64. https://doi.org/10.1002/mrm.1910290406
  16. Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 1997;15:29-35. https://doi.org/10.1016/S0730-725X(96)00234-2
  17. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility- weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19-30.
  18. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibilityweighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009;30:232-252.
  19. Yan SQ, Sun JZ, Yan YQ, Wang H, Lou M. Evaluation of brain iron content based on magnetic resonance imaging (MRI): comparison among phase value, R2* and magnitude signal intensity. PLoS One 2012;7:e31748. https://doi.org/10.1371/journal.pone.0031748
  20. Walsh AJ, Wilman AH. Susceptibility phase imaging with comparison to R2 mapping of iron-rich deep grey matter. Neuroimage 2011;57:452-461. https://doi.org/10.1016/j.neuroimage.2011.04.017
  21. Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 2009;46:73-80.
  22. Schipper HM. Neurodegeneration with brain iron accumulation- clinical syndromes and neuroimaging. Biochim Biophys Acta 2012;1822:350-360. https://doi.org/10.1016/j.bbadis.2011.06.016
  23. McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008;70:1614-1619. https://doi.org/10.1212/01.wnl.0000310985.40011.d6
  24. Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis 2012;46:1-18. https://doi.org/10.1016/j.nbd.2011.12.054
  25. Kumar N, Boes CJ, Babovic-Vuksanovic D, Boeve BF. The "eye-of-the-tiger" sign is not pathognomonic of the PANK2 mutation. Arch Neurol 2006;63:292-293. https://doi.org/10.1001/archneur.63.2.292
  26. Lee JH, Kim DS, Baik SK, Nam SO. Nigropallidal iron accumulation in pantothenate kinase-associated neurodegeneration demonstrated by susceptibility-weighted imaging. J Neurol 2010;257:661-662. https://doi.org/10.1007/s00415-009-5414-x
  27. Baraibar MA, Barbeito AG, Muhoberac BB, Vidal R. Ironmediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration. J Biol Chem 2008;283:31679-31689. https://doi.org/10.1074/jbc.M805532200
  28. Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov Disord 2006;21:1299-1310. https://doi.org/10.1002/mds.21020
  29. Morawski M, Meinecke Ch, Reinert T, Dorffel AC, Riederer P, Arendt T, et al. Determination of trace elements in the human substantia nigra. Nucl Instrum Methods Phys Res B 2005;231:224-228. https://doi.org/10.1016/j.nimb.2005.01.061
  30. Bartzokis G, Cummings JL, Markham CH, Marmarelis PZ, Treciokas LJ, Tishler TA, et al. MRI evaluation of brain iron in earlier-and later-onset Parkinson's disease and normal subjects. Magn Reson Imaging 1999;17:213-222. https://doi.org/10.1016/S0730-725X(98)00155-6
  31. Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA. Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease. Neurology 1995;45:1138-1143. https://doi.org/10.1212/WNL.45.6.1138
  32. Graham JM, Paley MN, Grünewald RA, Hoggard N, Griffiths PD. Brain iron deposition in Parkinson's disease imaged using the PRIME magnetic resonance sequence. Brain 2000;123 (Pt 12):2423-2431. https://doi.org/10.1093/brain/123.12.2423
  33. Zhang J, Zhang Y, Wang J, Cai P, Luo C, et al. Characterizing iron deposition in Parkinson's disease using susceptibilityweighted imaging: an in vivo MR study. Brain Res 2010;1330:124-130. https://doi.org/10.1016/j.brainres.2010.03.036
  34. Jin L, Wang J, Zhao L, Jin H, Fei G, Zhang Y, et al. Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson's disease. Brain 2011;134(Pt 1):50-58. https://doi.org/10.1093/brain/awq319
  35. Han YH, Lee JH, Kang BM, Mun CW, Baik SK, et al. Topographical differences of brain iron deposition between progressive supranuclear palsy and parkinsonian variant multiple system atrophy. J Neurol Sci 2013;325;29-35. https://doi.org/10.1016/j.jns.2012.11.009
  36. Lee JH, Han YH, Kang BM, Mun CW, Lee SJ, et al. Quantitative assessment of subcortical atrophy and iron content in progressive supranuclear palsy and parkinsonian variant of multiple system atrophy. J Neurol 2013;260:2094-2101. https://doi.org/10.1007/s00415-013-6951-x
  37. Du G, Lewis MM, Sen S, Wang J, Shaffer ML, Styner M, et al. Imaging nigral pathology and clinical progression in Parkinson's disease. Mov Disord 2012;27:1636-1643. https://doi.org/10.1002/mds.25182
  38. Lee JH, Han YH, Cho JW, Lee JS, Lee SJ, et al. Evaluation of brain iron content in idiopathic REM sleep behavior disorder using quantitative magnetic resonance imaging. Parkinsonism Relat Disord.
  39. Honda K, Casadesus G, Petersen RB, Perry G, Smith MA. Oxidative stress and redox-active iron in Alzheimer's disease. Ann N Y Acad Sci 2004;1012:179-182. https://doi.org/10.1196/annals.1306.015
  40. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 2001;30:447-450. https://doi.org/10.1016/S0891-5849(00)00494-9
  41. Mantyh PW1, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem 1993;61:1171-1174. https://doi.org/10.1111/j.1471-4159.1993.tb03639.x
  42. Bartzokis G, Sultzer D, Cummings J, Holt LE, Hance DB, Henderson VW, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry 2000;57:47-53. https://doi.org/10.1001/archpsyc.57.1.47
  43. Zhu WZ, Zhong WD, Wang W, Zhan CJ, Wang CY, Qi JP, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 2009;253:497-504. https://doi.org/10.1148/radiol.2532082324
  44. Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 2013;37:127-136.
  45. House MJ, St Pierre TG, Foster JK, Martins RN, Clarnette R. Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR Am J Neuroradiol 2006;27:430-439.
  46. House MJ, St Pierre TG, Kowdley KV, Montine T, Connor J, Beard J, et al. Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from alzheimer's disease patients. Magn Reson Med 2007;57:172-180. https://doi.org/10.1002/mrm.21118
  47. LeVine SM. Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res 1997;760:298-303. https://doi.org/10.1016/S0006-8993(97)00470-8
  48. Ropele S, de Graaf W, Khalil M, Wattjes MP, Langkammer C, Rocca MA, et al. MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging 2011;34:13-21. https://doi.org/10.1002/jmri.22590
  49. Bermel RA, Puli SR, Rudick RA, Weinstock-Guttman B, Fisher E, Munschauer FE 3rd, et al. Prediction of longitudinal brain atrophy in multiple sclerosis by gray matter magnetic resonance imaging T2 hypointensity. Arch Neurol 2005;62:1371-1376. https://doi.org/10.1001/archneur.62.9.1371
  50. Ropele S, Kilsdonk ID, Wattjes MP, Langkammer C, de Graaf WL, Frederiksen JL, et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Mult Scler 2014 Apr 30. [Epub ahead of print].
  51. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich's ataxia. Ann Neurol 1999;46:123-125. https://doi.org/10.1002/1531-8249(199907)46:1<123::AID-ANA19>3.0.CO;2-H
  52. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 2007;110:401-408. https://doi.org/10.1182/blood-2006-12-065433
  53. Ignjatovic A, Stevic Z, Lavrnic S, Dakovic M, Bacic G. Brain iron MRI: a biomarker for amyotrophic lateral sclerosis. J Magn Reson Imaging 2013;38:1472-1479. https://doi.org/10.1002/jmri.24121
  54. Vinod Desai S, Bindu PS, Ravishankar S, Jayakumar PN, Pal PK. Relaxation and susceptibility MRI characteristics in Hallervorden- Spatz syndrome. J Magn Reson Imaging 2007;25:715-720. https://doi.org/10.1002/jmri.20830