• Title/Summary/Keyword: Iron Tools

Search Result 82, Processing Time 0.032 seconds

A Study on Cutting Characteristic in Turning Ductile Cast Iron(FCD500) (구상화 흑연주철(FCD500)의 가공성에 관한 연구)

  • Oh, Sung-Hoon;Kim, Ho-Geon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • The purpose of this study is to investigate cutting characteristics and wear behavior in FCD500 ductile cast iron turning with different cutting tools, tungsten-carbide and CBN. Mechanical property, cutting characteristics and the application to the real industrial area is the final purpose. FDC500 ductile cast iron is now widely used in the various commercial vehicle parts for increased machine abilities which accrue more tensile strength with lower hardness. Several studies have been fulfilled for the material and heat-treatment area, but few with the cutting characteristics and wear behavior in the turning area.

Slide Way of Machine Tools (工作機械 슬라이드웨이(Slide Way))

  • 염영하
    • Journal of the KSME
    • /
    • v.18 no.4
    • /
    • pp.5-10
    • /
    • 1978
  • 1. 공작기계의 Slide way 방식은 공작기계의 내마모성의 아내면으로서 앞으로 더욱 증가될 것이 예상된다. 2. 우리나라의 경우 공작기계안내면으로서 적합한 meehanite cask iron을 개발하여 사용할 수 있 으나 조,용해시설불비와 기술자부족, 시설투자비 생산원가상승조래 등의조건을 감안할 때, Silde way를 Bearing과 같은 부품과 같이 외주에 의존하여 조립하는 것은 바람직하다.

  • PDF

Working Activities of the Dallajae Traditional Farmhouse in Lungching, China (중국 용정지방 달라재 전통농가의 작업 행위 조사연구)

  • 박남희;고도임
    • Journal of the Korean housing association
    • /
    • v.9 no.3
    • /
    • pp.119-131
    • /
    • 1998
  • This paper is a part of "The Study of the Traditional Korean Ethnic Farmhousing in Yanbian, China". The purpose of this study focuses on Korean farm house and is twofold: 1) to survey the working space and storage space for tools: 2) to investigate the daily use of space according to the different work activities. It is based on a survey of 124 households in the farm villages of Lunching, China. Survey research methods included a field study in Dallajae. A questionnaire was used to conduct this study. the study found that the working space for the koran farm family is divided into an indoor area and outdoor area. The indoor space includes working areas where the families live their daily life, cook, launder, clean, mange the house keeping, usually stare the grain. The outdoor space includes areas to store the grain, farm tools, rice box, shelves and other things such as sewing machine, iron, and tools used for cleaning the house and for farming. The center of life and work for the farm family was the chung-ji-kan (the combined kitchen and major ondol living room) located in the indoor space.oor space.

  • PDF

Tool Wear in High Speed Face Milling Using CBN Tool (CBN 공구를 이용한 고속 정면밀링시의 공구마멸)

  • 최종순
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.332-338
    • /
    • 2000
  • The high speed machining is now one of the most effective manufacturing methods to achive higher productivity. However, due to the increased cutting temperatures caused by increased cutting speed, tool wear become larger. Especially in high speed face milling, cutting tools are exposed not only to high cutting temperatures, but also to mechanical and thermal shock stresses. It is essential, therefore, to know the wear characteristics of tool materials in high speed machining. This study presents an experimental investigation of the cutting performance of CBN tools in high speed face milling of gray cast iron FC25. The effect of cutting conditions and cutting length on flank wear of CBN tools and roughness of machined surfaces is investigated. The cutting parameters involved were ; cutting speeds in the range of 600to 1800 m/min, feed of 0.1 mm/tooth, and depth of cut of 0.3mm.

  • PDF

A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy

  • Na, Seon-Hyeong;Seol, Jae-Bok;Jafari, Majid;Park, Chan-Gyung
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • A new method was introduced to distinguish the ferrite, bainite and martensite in transformation induced plasticity (TRIP) steel by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD is a very powerful microstructure analysis technique at the length scales ranging from tens of nanometers to millimeters. However, iron BCC phases such as ferrite, bainite and martensite cannot be easily distinguished by EBSD due to their similar surface morphology and crystallographic structure. Among the various EBSD-based methodology, image quality (IQ) values, which present the perfection of a crystal lattice, was used to distinguish the iron BCC phases. IQ values are very useful tools to discern the iron BCC phases because of their different density of crystal defect and lattice distortion. However, there are still remaining problems that make the separation of bainite and martensite difficult. For instance, these phases have very similar IQ values in many cases, especially in deformed region; therefore, even though the IQ value was used, it has been difficult to distinguish the bainite and martensite. For more precise separation of bainite and martensite, IQ threshold values were determined by a correlative TEM analysis. By determining the threshold values, iron BCC phases were successfully separated.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

The Internal Finishing Characteristics of Non-ferromagnetic Pipe Polished by Magnetic Abrasive Machining(III) (자기연마법에 의한 비자성 파이브 내면의 연마특성(III))

  • Park, W. K.;Rho, T. W.;Seo, Y. I.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.915-918
    • /
    • 1997
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, an abrasive circulation system was designed and manufactured. As a result, it was found that a fine inner surface abrasive of pipe was available by the use of this machining methods. The basic machining characteristics of pin-type magnetic tools were analyzed experimentally. In addition, the experimental results show that we can realize that pin-type magnetic tools have more machining efficiency than iron particles as magnetic tools.

  • PDF

A Study on the Material Characteristics of Stone Tools Excavated from the Remain Point of Paleolithic Age in Osong Site, Cheongju

  • Kim, Jae Hwan;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • This study analyzes the material characteristics of stone tools of the Paleolithic period excavated from the Osong site, located at the project site for the creation of the Osong 2nd Life Science Complex, and estimates the provenance of the stone materials. Because the stones had been buried for a long time, their surfaces had become heavily weathered yellow or yellowish-brown, and the magnetic susceptibility values varied from 0 to 15(${\times}10^{-3}SI$). The excavated stone tools were rocks with various magnetic susceptibility values that could not be specified. Five stone tools subjected to destructive analysis were divided into two groups, one with a value of 1-3(${\times}10^{-3}SI$) and the other with a value of 5-9(${\times}10^{-3}SI$), both based on visible characteristics. The results of the thin-section analysis showed that most of the stone tools were basaltic rocks comprising plagioclase, quartz, and pyroxene, and some had iron content as high as 20 wt.%. These findings and the present geological map suggest that the stone tools were not made from the surrounding rocks because there are no areas containing basaltic rocks surrounding Bongsan-ri in Osong-eup. Andesite and tuff are distributed along with basaltic rocks in the Doan-myeon area in Jeongpyeong-gun, Chungcheongbuk-do Province, but the distance from the excavation site is too far. To determine whether this region is actually related to the provenance of the raw rock, it is necessary to conduct additional field surveys and comprehensive and precise analyses.

A Study of Cast Ironware Heat Treatment Technique in Ancient Korea (고대 한반도 주조철기 열처리 기술에 대한 고찰)

  • Choi, Yeongmin
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.1
    • /
    • pp.168-183
    • /
    • 2020
  • Efforts had been made to eliminate the brittleness unique to cast ironware from 5 BC up until the time that cast ironware became widely used. One of the techniques used to this end was to produce the cast ironware in one kiln and then anneal it in another kiln. This technique condensed or removed the carbon in the structure to eliminate the brittleness of cast ironware and enable forging. To clarify the nature of this technique, this study examined cast ironware made of malleable cast iron, which manifests the characteristics of the annealing technique for cast ironware excavated on the Korean peninsula, based on current steelmaking technology and research results from China and Japan. Results confirmed that all cast ironware made of malleable cast iron had been imported into Korea until the Proto-Three Kingdoms Period. Also, since the Chiljido (Seven-Branched Sword), which is housed at the Ishigami Shrine in Japan, appears to have been produced in the Korean peninsula, it is determined that Baekje in the 4th century must have possessed such an annealing technique. At that time, however, iron was produced mainly with an iron bloom, and a large amount of forged iron was produced with a steel bloom smelted from an iron bloom. In addition, most of the cast ironware that was used previously, except for cast iron hoes, had been replaced by forged ironware. In other words, this annealing technique was not used frequently until the Three Kingdoms Period. However, it spread broadly during the Unified Silla Period in so much as it was identified in the Jangan-ri remains, which represented the regional hub of iron production and distribution.

Recovery of Copper Powder from MoO3 Leaching Solution (MoO3 침출공정 폐액으로부터 동분말의 회수기술)

  • Hong, Hyun-Seon;Jung, Hang-Chul;Kim, Geun-Hong;Kong, Man-Sik
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.351-357
    • /
    • 2009
  • A two-step recovery method was developed to produce copper powders from copper chloride waste solution as byproducts of MoO$_3$ leaching process. The first step consisted of replacing noble copper ions with external Fe$^{3+}$ ions which were formed by dissolving iron scraps in the copper chloride waste solution. The replaced copper ions were subsequently precipitated as copper powders. The second step was cementation of entire solution mixture to separate (pure) copper powders from aqueous solution of iron chloride. Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRD, SEM-EDS and laser diffraction and scattering methods.Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99% purity and average 1$\sim$2$\mu$m in size.