• Title/Summary/Keyword: Iron Production

Search Result 607, Processing Time 0.027 seconds

Lineage of Horse Bridle Kept in Yatsushiro Shrine in Kamishima (가미시마 야츠시로 신사(神島八代神社) 소장 재갈의 계보)

  • Shimizu, Yasuji
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.156-179
    • /
    • 2016
  • Yatsushiro Shrine on the island of Kamishima located in Ise Bay, Japan, contains many cultural artifacts with ancient mirrors in significant numbers. Also included among the artifacts are horse gags and reins that are clearly of the same lineage as the horse harnesses from the unified Shilla era and Goryeo era in Korean history. Type classification and position establishment were carried out on the horse reins kept in the Yatsushiro shrine, including items such as those mentioned previously. Type A horse harness can be classified into 3 types. Based on this classification scheme, the harness type in the Yatsushiro shrine was found to belong to the most recent period. The blacksmith workshop that made the harness was producing iron wares and bronze wares, and it possessed metal forging and metal casting technologies. Note, however, that it was primarily a workshop where iron wares were made. The parts that were visible from the outside when the harness was attached were made from composite bronze, and the reins and bridle linkage were made from iron. Such integration of bronze ware production techniques and iron ware production techniques was an attempt at enhancing the practicality and embellishments on the harness.

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat

  • Zhang, Muhan;Yan, Weili;Wang, Daoying;Xu, Weimin
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1382-1391
    • /
    • 2021
  • Objective: The objective was to evaluate the impact of different forms of iron including myoglobin, hemin, and ferric chloride on the quality of chicken breast meat. Methods: Chicken breast muscles were subjected to 1, 2, 3 mg/mL of FeCl3, myoglobin and hemin treatment respectively, and the production of reactive oxygen species (ROS) and malondialdehyde, meat color, tenderness, water holding capacity and morphology of meat was evaluated. Results: Hemin was found to produce more ROS and induce greater extent of lipid oxidation than myoglobin and ferric chloride. However, it showed that hemin could significantly increase the redness and decrease the lightness of the muscle. Hemin was also shown to be prominent in improving water holding capacity of meat, maintaining a relatively higher level of the immobilized water from low-field nuclear magnetic resonance measurements. Morphology observation by hematoxylin-eosin staining further confirmed the results that hemin preserved the integrity of the muscle. Conclusion: The results indicated that hemin may have economic benefit for the industry based on its advantage in improving water holding capacity and quality of meat.

Salmonella Typhimurium SL1344 Utilizing Human Transferrin-bound Iron as an Iron Source Regardless of Siderophore-mediated Uptake (Salmonella Typhimurium SL1344의 사람의 트렌스페린(hTf)에 부착된 철 이용에 관한 연구)

  • Choe, Yunjeong;Yoo, Ah Young;Kim, Sam Woong;Hwang, Jihwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.72-77
    • /
    • 2017
  • Inorganic iron is essential for various metabolic processes, including RNA synthesis, electron transport, and oxygen detoxification in microorganisms. Many bacterial pathogens compete for iron acquisition in diverse environmental condition such as host. Salmonella Typhimurium SL1344 also requires inorganic iron as a cofactor for growth. When a M9 minimal liquid medium was supplemented with ethylenediamine di-o-hydroxyphenylactic acid (EDDA) which acts as an iron-chelating agent, growth of Salmonella Typhimurium SL1344 in the supplemented medium was completely arrested by deficient of useful iron under iron-depleted condition. However, a number of siderophores, which are small, high-affinity iron chelating compounds secreted by microorganisms such as bacteria and fungi, were produced for utilization of restricted iron under iron-depleted condition. A M9 minimal liquid medium complemented with human transferrin (hTf)-iron complex turned completely off production of siderophores, but growth of Salmonella Typhimurium SL1344 maintained level similar to compare one complemented with iron (III) chloride (FeCl3). This means that human transferrin (hTf)-bound iron can utilize via directly interaction with Salmonella Typhimurium SL1344 without productions of siderophores. Through construction and analysis of negative mutant for utilization of human transferrin (hTf)-bound iron, we confirm that the bacterium can directly use human transferrin (hTf)-bound iron without extracellularly intermediated carriers such as siderophores.

A Study for Recoverability of Iron Resource in Red Mud (레드머드 내 철 자원 회수 가능성 고찰)

  • Kim, Bong-Ju;Kwon, Jang-Soon;Koh, Yong-Kwon;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.297-306
    • /
    • 2020
  • The red mud generated from bauxite during the Bayer alumina production process has been regarded as an industrial waste due to the high alkaline property and high content of Na. Despite of its environmental problem, various studies for recovery of the valuable resources from red mud has been also carried out because of high content (25.7 wt.% as Fe2O3 in this study) of iron in red mud. In order to recover the iron resource in the red mud, microwave heating experiments were performed with adding of activated carbon and elemental sulfur to the red mud. Through the microwave heating the powdered red mud mixtures converted to porous and vitrified solid aggregates. The vitrified aggregates produced by microwave heating are composed of goethite, zero valent iron (Fe0), pyrrhotite and pyrite. And then, the microwave heating samples were dissolved in the aqua regia solution, and Fe precipitates were obtained as a Fe-chlorides by adding of NaCl salt in the aqua regia solution. The Fe recovery rates in the Fe-chloride precipitates showed differences depending on the experimental mixture conditions, and Fe grades of the end products are 49.0 wt.%, 58.0 wt.% and 59.5 wt.% under mixture conditions of red mud, red mud + activated carbon, and red mud + activated carbon + elemental S, respectively. The Fe content of 56.0 wt.% is generally known as the grade value of Fe in a iron ore for iron production, and the Fe grades of microwave heating samples with adding activated carbon and elemental S in this study are higher than the grade value of 56.0 wt.%.

Reponse of Hydrogen Fermentation to Variation of Iron (철 농도 변화에 대한 수소발효의 반응)

  • 이영준
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.119-123
    • /
    • 2001
  • 철 농도변화에 따른 대사산물 생성에 대한 반응은 중온조건에서 회분식 실험으로 수해하였다. 철의 농도가 40mg/$\ell$까지는 철 농도의 증가에 따라 수소생성율도 증가하였다. acetate 생성율은 철의 농도가 증가함에 따라 감소하였다. Butyrate, ethanol 및 butanol은 각각 철 농도가 200,200 및 400mg/$\ell$에서 최대 생성율을 나타내었다. 철의 농도가 200mg/$\ell$이상의 농도엘 때에 propionate, i-butyrate 및 valerate 생성율이 철의 농도가 200mg/$\ell$ 이하의 경우 보다 낮았다. 미생물농도의 경우 철 농도가 300mg/$\ell$까지는 농도가 증가함에 따라 미생물농도도 증가하였다.

  • PDF

Iron overload induces damage of global DNA and TP 53 in human lymphocytes

  • Park, Eunju;Beatrice, L.Pool Zobel
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.38-38
    • /
    • 2003
  • High iron consumption is associated with an increased risk of cancer possibly via production of reactive oxygen species (ROS) which in turn induces oxidative damage to lipids, proteins and DNA. The aim of the study was to determine whether Fe-NT A causes DNA damage and targets TP 53 in human peripheral lymphocytes. (omitted)

  • PDF

The Status of Domestic Hydrogen Production, Consumption, and Distribution (국내 수소 생산, 소비 및 유통 현황)

  • Gim, Bong-Jin;Kim, Jong-Wook;Choi, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.

Characteristics of Redox Agent with Additive in Steam-Iron Process for the High Purity Hydrogen Production (고순도 수소 생성을 위한 SIP법에서 첨가제에 따른 환원 특성)

  • Jeon, Bup-Ju;Kim, Sun-Myung;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.340-348
    • /
    • 2011
  • Effects of various inorganic-metal oxide (Zr, Zn, Si, Al and Ca as promoters and stabilizers) additive on the reduction rate of iron oxide and the composition of forming hydrogen using the steam-iron cycle operation was investigated. The reduction rate of redox agent with additive was determined from weight change by TGA. The changes of weight loss and reduction rate according to redox agent with various additive affected the hydrogen purity and cycle stability of the process. The cyclic micro reactor showed that hydrogen purity exceeding 95% could be obtained by the water splitting with Si/Fe, Zn/Fe, Zr/Fe redox agents. The redox agents with these elements had an affect on redox cycle stability as a good stabilizer for forming hydrogen by the steam-iron process.

Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii

  • Hasan, Tarik;Choi, Chul Hee;Oh, Man Hwan
    • Genomics & Informatics
    • /
    • v.13 no.1
    • /
    • pp.2-6
    • /
    • 2015
  • Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.