• Title/Summary/Keyword: Iron(II)

Search Result 381, Processing Time 0.029 seconds

Generation of Free Radicals by Interaction of Iron with Thiols in Human Plasma.

  • Lee, S. J.;K. Y. Chung;J. H. Chung.
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.138-138
    • /
    • 2002
  • Oxidative stress has been associated with a number of diseases in human. Among the sources that can generate oxidative stress, it has been reported that iron can generate reactive oxygen species (ROS)with thiol. In iron overload state, increased thiol levels in plasma appeared to be associated with human mortality. In this study we examined whether iron could interact with thiols in plasma, generating ROS. In human plasma, unlike with Fe(III), Fe(II) increased lucigenin-enhanced chemiluminescence in concentration-dependent manner, and this was inhibited by SOD. Boiling of plasma did not affect chemiluminescence induced by Fe(II). Hovever, thiol depletion in plasma by pretreatment with N-ethylmaleimide (NEM)decreased Fe(II)-induced chemiluminescence significantly, suggesting that Fe(II) generated superoxide anion by the nonenzymatic reaction with plasma thiol. Consistent with this findings, albumin, the major thiol contributor in plasma, also generated ROS with Fe(II) and this generation was inhibited by pretreatment with NEM. Treatment with Fe(II) to plasma resulted un significant reduction of oxygen radical absorbance capacity (ORAC) value, suggest that total antioxidant capacity could diminished in iron overload state. In conclusion, In iron overload state, plasma may be affected by oxidative stress mediated by nonenzymatic reaction of Fe (II)with plasma thiol.

  • PDF

Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria (철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구)

  • Shin, Hwa-Young;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

Temporal changes in mitochondrial activities of rat heart after a single injection of iron, including increased complex II activity

  • Kim, Mi-Sun;Song, Eun-Sook
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • Male rats were given a single injection of iron, and temporal changes in iron content and iron-induced effects were examined in heart cellular fractions. Over a period of 72 h, the contents of total and labile iron, reactive oxygen species, and NO in tissue homogenate, nuclear debris, and postmitochondrial fractions were mostly constant, but in mitochondria they continuously increased. An abrupt decrease in membrane potential and NAD(P)H at 12 h was also found in mitochondria. The respiratory control ratio was reduced slowly with a slight recovery at 72 h, suggesting uncoupling by iron.While the ATP content of tissue homogenate decreased steadily until 72 h, it showed a prominent increase in mitochondria at 12 h. Total iron and calcium concentration also progressively increased in mitochondria over 72 h. Enzyme activity of the oxidative phosphorylation system was significantly altered by iron injection: activities of complexes I, III, and IV were reduced considerably, but complex II activity and the ATPase activity of complex V were enhanced. A reversal of activity in complexes I and II at 12 h suggested reverse electron transfer due to iron overload. These results support the argument that mitochondrial activities including oxidative phosphorylation are modulated by excessive iron.

Synthesis of a Series of Long Chain Lamellar Inorganic/Organic Iron(II) Alkylsulfonate Hydrates

  • Park, Seong-Hun
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.76-78
    • /
    • 2008
  • A series of the long-chain iron(II) alkylsulfonate hydrates were synthesized via self-assembly of surfactant alkyl chains in aqueous medium. Reaction of iron(II) salts with n-alkylsulfonate yields lamellar $Fe(CnH2n+1SO3)2{\cdot}4H_2O$. These compounds show a layered structure, as determined by XRD, consisting of alternating organic alkylsulfonate layers and inorganic iron(II) hydrate layers, with interlayer distances of upto 3.2 nm. This lamellar structure may be attributed to the amphiphilic nature of the surfactants, mediating the coordination and H-bionding interactions, and the hydrophobic alkyl chains. An alkyl chain packing of present system are differ from those of similar Cu(II) series, which are attributed from the size of hydrated metal(II) ions.

  • PDF

Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent (3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.541-548
    • /
    • 2009
  • Iron coated media (activated carbon, sand and starfish) were prepared at pH 4 and applied for the treatment of landfill leachate containing organic compounds and soluble metal ions such as $Zn^{2+},\;Cu^{2+},\;Mn^{2+}$ in batch and column experiment. The amount of iron coated in media was analyzed with EPA 3050B method. The removal efficiency of metal ions and phenol was compared with iron coated media. The amount of iron coated in Fe-AC and ICS(iron coated sand) were 1,612 mg/kg and 1,609 mg/kg, respectively, while it was higher with 1,768 mg/kg in ICSF(iron coated starfish). The result of batch study represent the highest removal efficiency in the treatment of wastewater using iron coated starfish. In column study, the removal efficiency of phenol and metal ions was higher in multi-layered system of ICS, Fe-AC and ICSF compared to single layered system. Breakthrough time in the effluent was relatively enhanced for $Cu^{2+}$ and $Zn^{2+}$ in multi-layered system while the removal efficiency of $Mn^{2+}$ were not varied much. Therefore, multi-layered system was identified as the better system for the treatment of wastewater containing of metal ions and organic compound.

Study on the Effect of Iron-based Metal Catalysts on the Thermal Decomposition Behavior of ABS (Iron계 금속 촉매가 ABS의 열분해 거동에 미치는 영향에 관한 연구)

  • Jang, Junwon;Kim, Jin-Hwan;Bae, Jin-Young
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.496-501
    • /
    • 2005
  • The thermal degradation of ABS in the presence of iron-based metal catalysts has been studied by thermogravimetric analysis (TGA). The reaction of iron-based metal catalysts (ferric nitrate nonahydrate, ammonium ferric sulfate dodecahydrate, iron sulfate hydrate, ammonium ferric oxalate, iron(II) acetate, iron(II) acetylacetonate and ferric chloride) with ABS has been found to occur during the thermal degradation of ABS. In a nitrogen atmosphere, char formation was observed, and at $600^{\circ}C$ approximately 3~23 wt% of the reaction product was non-volatile char. The resulting enhancement of char formation in a nitrogen atmosphere has been primarily due to the catalytic crosslinking effect of iron-based metal catalysts. On the other hand, char formation of ABS in air at high temperature by iron-based metal catalyst was unsuccessful due to the oxidative degradation of the char.

Application of Iron Sand as Adsorbent for the Removal of Heavy Metal (중금속 제거용 흡착제로서의 철광사 적용)

  • Yang, Jae-Kyu;Yu, Mok-Ryun;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1180-1185
    • /
    • 2005
  • Iron sand, having iron as a major component, was applied in the treatment of synthetic wastewater containing Cu(II) or Pb(II). To investigate the stability of iron sand at acidic condition, dissolution of Fe and Al was studied with variation of solution pH ranging from 2 to 4.5. Iron concentration in the extracted solution was below the emission regulation of wastewater even at a strong acidic condition, pH 2. Although an important concentration of aluminum was extracted at pH 2, the dissolution greatly decreased above pH 3. This stability test suggests that application of iron sand has little problem in the treatment of wastewater above pH 3. Adsorption capacity of Cu(II) and Pb(II) onto iron sand was investigated in a batch and a column test. In case of Cu(II), rapid adsorption was noted, showing 50% removal within 2 hrs, and then reached a near complete equilibrium after 24 hrs. Adsorption was favorable at higher pH in each metal ion and showed a near complete removal above pH 6, indicating a typical cationic-type adsorption. From the adsorption isotherm obtained with variation of the concentration of each metal ion, the maximum adsorption capacity of Cu(II) and Pb(II) was identified as 2,170 mg/kg 및 3,450 mg/kg, respectively.

Solution Nuclear Magnetic Resonance Spectral Characterization of Iron(II) Porphyrin Complexes of Weakly Coordinating Anions

  • Song, Byung-Ho;Park, Bong-Jin;Han, Chul-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.119-122
    • /
    • 2002
  • Weakly coordinating anions show little affinity for binding to unfunctionalized iron(II) porphyrins. The electron-deficient 5, 10, 15, 20-tetrakis(pentafluorophenyl)porphinatoiron(II) compound is utilized in this study to demonstrate solution coordination by chloride, bromide and acetate ions. The binding strength of anions to the iron(II) porphyrin is reflected by a systematic change in pyrrole proton chemical shift in $^1H$ NMR spectra; the pyrrole resonance moves downfield when the ${\sigma}$-donor ability of anions is decreased.

A Study on the Oxidation Reaction of Iron (II) Sulfate by Dry and Wet Process (황산제1철의 乾濕式에 의한 酸化反應에 對한 硏究)

  • Soo Duk Suhl;Joo Kyung Sung;Yong Kil Whang
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.121-124
    • /
    • 1977
  • A study on the formation of black iron oxide was carried in differents of Fe(III), Fe(II) ion in the aqueous solution that iron(II) sulfate was calcined under various temperature and leached in water. The results obtained was follows; (1) It was found that the sample calcined in an electric muffle furnace maintained at $500^{\circ}C$ for 1 hour and leached in water was equivalent mole (Fe(III) /Fe(II) = 1) in 20% aqueous solution. (2) When the above mentioned solution was hydrolyzed at pH range of 7 to 8 for 2 hours at $100^{\circ}C$, 93% and over of iron was recovered in the form of ${\alpha}-Fe_3O_4$ with a black colour.

  • PDF

Cellular Iron Uptake from Aqueous Solutions depending on Reaction Conditions by genetically engineered Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae에 있어서 반응조건에 따른 수용성 철의 생체 흡수)

  • Kim Sang-Jun;Chang Yu-Jung;Park Chung-Ung;Jeong Yong-Seob;Kim Kyung-Suk
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.441-445
    • /
    • 2004
  • Cellular iron uptake was performed in the yeast Saccharomyces cerevisiae that transformed with human ferritin H- and L-chain genes. The recombinant yeasts were enriched in YEP medium supplemented with $2\%$ galactose for 3 days and the iron uptake was followed by incubating the cells with iron in 20 mM MOPS buffer (pH 6.5). The reactions were examined under different conditions including the iron compounds of Fe(II) and Fe(III), the concentration of iron, the concentration of cells and the reaction time. From our results, the recombinant yeast YGH2 producing H-chain ferritin showed higher cellular iron concentration at the cell concentration of 100 mg/ml than 200 mg/ml. Iron presented as Fe(II) rather than Fe(III) was taken up more efficiently. Iron uptake increased slightly when iron was added up to 14.3 mM Fe(II) and then its cellular iron concentration was $16.7{\pm}0.7\;{\mu}mol/g$ cell wet wt. In addition, the iron uptake reaction reached to maximum at about 2 hr incubation.