• Title/Summary/Keyword: Ionosphere

Search Result 269, Processing Time 0.029 seconds

IONOSPHERIC EFFECTS ON THE RADIO COMMUNICATION (전파통신에서의 전리층 역할)

  • PYO YOO SURN;CHO KYOUNGSEOK;LEE DONG-HUN;KIM EUNHWA
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.21-25
    • /
    • 2000
  • The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.

  • PDF

A Validated Solution for the Threat of Ionosphere Spatial Anomalies to Ground Based Augmentation System Users

  • Pullen, Sam;Lee, Ji-Yun;Datta-Barua, Seebany;Park, Young-Shin;Zhang, Godwin;Enge, Per
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.9-14
    • /
    • 2006
  • This paper develops a complete methodology for the mitigation of ionosphere spatial anomalies by GBAS systems fielded in the Conterminous U.S. (CONUS). It defines an ionosphere anomaly threat model based on validated observations of unusual ionosphere events in CONUS impacting GBAS sites in the form of a linear ‘wave front’ of constant slope and velocity. It then develops a simulation-based methodology for selecting the worst-case ionosphere wave front impact impacting two satellites simultaneously for a given GBAS site and satellite geometry, taking into account the mitigating effects of code-carrier divergence monitoring within the GBAS ground station. The resulting maximum ionosphere error in vertical position (MIEV) is calculated and compared to a unique vertical alert limit, or $VAL_{H2,I}$, that applies to the special situation of worst-case ionosphere gradients. If MIEV exceeds $VAL_{H2,I}$ for one or more otherwise-usable subset geometries (i.e., geometries for which the 'normal' vertical protection level, or $VPL_{H0}$, is less than the 'normal' VAL), the broadcast ${\sigma}_{pr_{-}gnd}$ and/or ${\sigma}_{vig}$ must be increased such that all such potentially-threatening geometries have VPL$_{H0}$ > VAL and thus become unavailable. In addition to surveying all aspects of the methods used to generate the required ${\sigma}_{pr_{-}gnd}$ and ${\sigma}_{vig}$ inflation factors for CONUS GBAS sites, related methods for deriving similar results for GBAS sites outside CONUS are suggested.

  • PDF

Mid- and Low-Latitude Earth Ionospheric Phenomena and Current Status of Research (중·저위도 지구 전리권 현상 및 연구 현황 )

  • Eojin Kim;Ki-nam Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.239-256
    • /
    • 2023
  • The Earth's ionosphere is an area where part of the upper atmosphere is ionized and exists in a plasma state that affects radio waves. It is a field that has been studied for a long time as it directly affects real life in relation to communications. Depending on the altitude, it is divided into D, E, and F layers depending on the main ions that make up the electron density. The density of the neutral atmosphere is very large compared to the electron density, so it should be described as plasma taking that effect into account. It is an area where influences from outside the ionosphere are directly reflected, starting from the sun and extending to the earth's surface, and is a field that involves complex and diverse areas of research. In this paper, we explain the process by which the Earth's upper atmosphere is ionized to form the ionosphere and introduce the characteristics of the ionosphere at low and mid-latitudes. In addition, we introduce the research that domestic researchers have participated in related to the ionosphere to date and hope that it will be used to promote exchange in the field of ionospheric research in the future.

Near-real-time Ionosphere Modeling Based on Regional GPS Data

  • Park, Kwan-Dong;Hwang, Yoola;Park, Pil-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.537-539
    • /
    • 2003
  • We present a GPS-derived regional ionosphere model, which estimates Total Electron Content (TEC) in rectangular grids on the spherical shell over Korea. The GPS data from nine GPS stations were used. The pseudorange data were phase-leveled by a linear combination of pseudoranges and carrier phases. During a quiet day of solar activity, the regional ionosphere map indicated 30-45 Total Electron Content Unit (TECU) at the peak of the diurnal variation. In comparison with the Global Ionosphere Map of the Center for Orbit Determination in Europe, RMS differences were at the level of 4-5 TECU for five days.

  • PDF

Estimation of Total Electron Content in the Ionosphere over the Korean Peninsula using Permanent GPS Stations Operated by Ministry of Land, Transport and Maritime Affairs (국토해양부 GPS 상시관측소를 활용한 한반도 전리층의 총전자수 추정)

  • Kim, Kyeong-Hui;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.149-155
    • /
    • 2009
  • To quantitatively analyze the positioning error due to the ionosphere over the Korean peninsula, we created 2-dimensional ionosphere map using 44 permanent Global Positioning System(GPS) stations operated by Ministry of Land, Transport, and Maritime Affairs. We estimated Vertical Total Electron Content(VTEC) in a fine rectangular grids of $0.1^{\circ}{\times}0.1^{\circ}$ resolution. The observables we used were phase-leveled pseudoranges which are linear combinations of pseudoranges and carrier phases. VTECs were computed for five days during January 25-29, 2003 using the data from 45 permanent stations. In comparison with the Global Ionosphere Map of the Center for Orbit Determination in Europe, RMS differences were at the level of 8 TECU(TEC Unit).

  • PDF

Observations for the Ionosphere Using European Incoherent Scatter (EISCAT) in the Dayside Polar Cap/Cusp and Auroral Region

  • Geonhwa Jee;Eun-Young Ji;Eunsol Kim;Young-Sil Kwak;Changsup Lee;Hyuck-Jin Kwon;Ji-Eun Kim;Young-Bae Ham;Ji-Hee Lee;Jeong-Han Kim;Tae-Yong Yang;Hosik Kam
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Korea Polar Research Institute (KOPRI) and Korea Astronomy and Space Institute (KASI) have been participating in the European Incoherent Scatter (EISCAT) Scientific Association as an affiliate institution in order to observe the polar ionosphere since 2015. During the period of December 16-21, 2016 and January 3-9, 2018, the observations for the polar ionospheric parameters such as the electron density profiles, ion drift, and electron/ion temperature are carried out in the polar cap/cusp region by the EISCAT Svalbard radar (ESR). The purpose of the observations is to investigate the characteristic of the winter ionosphere in the dayside polar cap/cusp region. In this paper, we briefly report the results of the ESR observations for winter daytime ionosphere and also the simultaneous observations for the ionosphere-thermosphere system together with the balloon-borne instrument High-Altitude Interferometer WIND Experiment (HIWIND) performed by the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR). We further introduce our research activities using long-term EISCAT observations for the occurrence of ion upflow and the climatology of the polar ionospheric density profiles in comparison with the mid-latitude ionosphere. Finally, our future research plans will briefly be introduced.

Performance Evaluation of Ionosphere Modeling Using Spherical Harmonics in the Korean Peninsula

  • Han, Deokhwa;Yun, Ho;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • The signal broadcast from a GPS satellite experiences code delay and carrier phase advance while passing through the ionosphere, which causes a signal error. Many ionosphere models have been studied to correct this ionospheric delay error. In this paper, the ionosphere modeling for the Korean Peninsula was carried out using a spherical harmonics based model. In contrast to the previous studies, we considered a real-time ionospheric delay correction model using fewer number of basis functions. The modeling performance was evaluated by comparing with a grid model. Total number of basis functions was set to be identical to the number of grid points in the grid model. The performance test was conducted using the GPS measurements collected from 5 reference stations during 24 hours. In the test result, the modeling residual error was smaller than that of the existing grid model. However, when the number of measurements was small and the measurements were not evenly distributed, the overall trend was found to be problematic. For improving this problem, we implemented the modeling with additional virtual measurements.

IONOSPHERIC OBSERVATION USING KOREAN SATELLITES

  • MIN KYOUNG W.;LEE JAEJIN;PARK JAEHEUNG;KIM HEEJUN;LEE ENSANG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.109-115
    • /
    • 2003
  • We report the results of the ionospheric measurement obtained from the instruments on board the Korea Multi-Purpose Satellite - 1 (KOMPSAT-l). We observed a deep electron density trough in the nighttime equatorial ionosphere during the great magnetic storm on 15 July 2000. We attribute the phenomena to the up-lifted F-layer caused by the enhanced eastward electric field, while the spacecraft passed underneath the layer. We also present the results of our statistical study on the equatorial plasma bubble formation. We confirm the previous results regarding its seasonal and longitudinal dependence. In addition, we obtain new statistical results of the bubble temperature variations. The whole data set of measurement for more than a year is compared with the International Reference Ionosphere (IRI). It is seen that the features of the electron density and temperature along the magnetic equator are more prominent in the KOMPSAT-l observations than in the IRI model.

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

On the Variability of the Ionospheric F2-Layer During the Quietest Days in December 2009

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.273-278
    • /
    • 2016
  • December 2009 was one of the quietest (monthly Ap=2) months over the last eight decades. It provided an excellent opportunity to study the day-to-day variability of the F2 layer with the smallest contribution due to geomagnetic activity. With this aim, we analyze hourly values of the F2-layer critical frequency (foF2) recorded at 18 ionosonde stations during the magnetically quietest (Ap=0) days of the month. The foF2 variability is quantified as the relative standard deviation of foF2 about the mean of all the "zero-Ap" days of December 2009. This case study may contribute to a more clear vision of the F2-layer variability caused by sources not linked to geomagnetic activity. In accord with previous studies, we find that there is considerable "zero-Ap" variability of foF2 all over the world. At most locations, foF2 variability is presumably affected by the passage of the solar terminator. The patterns of foF2 variability are different at different stations. Possible causes of the observed diurnal foF2 variability may be related to "meteorological" disturbances transmitted from the lower atmosphere or/and effects of the intrinsic turbulence of the ionosphere-atmosphere system.