• Title/Summary/Keyword: Ionomer

Search Result 472, Processing Time 0.029 seconds

Preparation and Properties of Ionomer-Clay Hybrid Gas Barrier Membranes (Gas Barrier성 Ionomer-Clay 하이브리드 막의 제조 및 물성)

  • Nam Sang Yong;Goo Hyung Seo;Kim In Ho;Kim Young Jin;Joo Dae Seong;Park Ji Soon;Kim Jin Hak
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.320-328
    • /
    • 2004
  • Ionomer-Clay hybrid membranes were prepared by melt intercalation method with twin extruder. MMT was intercalated or exfoliated by the ionomer and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was moved and diminished. Gas permeability, mechanical properties and thermal properties of the ionomer-clay hybrid membranes were investigated. Gas permeability through the ionomer-clay hybrid membranes decreased due to increased tortuosity made by intercalation of clay in Ionomer.

A STUDY ON BONDING STRENGTH OF DENTAL AMALGAM TO GLASS IONOMER CEMENT FOLLOWING SURFACE TREATMENT (글라스아이오노머 시멘트 표면 처리에 따른 치과용 아말감의 전단 결합 강도에 관한 연구)

  • Shin, Young-Joo;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.217-230
    • /
    • 1994
  • The purpose of this study was to assess the 24-hour shear bond strength of amalgam to glass ionomer cement, using five different intermediaries. The intermediaries used in this study were Scotchbond 2 (light curing dentin adhesive), Panavia (resin cement), liquid' of glass ionomer cement (chemical curing & light curing), and uncured mixture of light curing glass ionomer cement. This study was operated with 48 specimens devided into 6 groups. The experimental groups are as follows: Group 1 : Bonded Amalgam to chemical curing glass ionomer cement with liquid of chemical curing glass ionomer. Group 2 : Bonded Amalgam to light curing glass ionomer cement with liquid of chemical curing glass ionomer. Group 3: Bonded Amalgam to light curing glass ionomer cement with resin cement. Group 4: Bonded Amalgam to light curing glass ionomer cement with light curing dentin adhesive. Group 5: Bonded Amdlgam to light curing glass ionomer cement with liquid of light curing glass ionomer. Group 6: Bonded Amalgam to light curing glass ionomer cement with uncured mixture of light curing glass ionomer cement. 30 minutes after amalgam condensation, all specimens were stored for 24 hours in water at $37^{\circ}C$ and tested with Instron (1122). The following results obtained: 1. The shear bond strength of group 6 was higher than those of the other groups (46.7 kgf/$cm^2$, p<0.05). 2. The shear bond strength of resin cement intermediary group was lower than that of the group using uncured mixture of light curing glass ionomer cement. 3. The results of group 1 and group 2 were different, even though the inter-me diaries used were same. 4. Intermediary of Group 5 did not show complete set in Scanning Electromicroscopic examination. 5. Light-curing dentin adhesive did not show any bonding ability to amalgam.

  • PDF

Development of Molecular Dynamics Model for Water Electrolysis Ionomer (수전해용 이오노머 분자동역학 모델 개발)

  • Kang, Hoseong;Park, Chi Hoon;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.433-442
    • /
    • 2020
  • In this study, in order to build a molecular dynamics simulation model of ionomer for water electrolysis, an ionomer model that reflects the characteristics of a water electrolysis system in which excess water molecules exist was compared to an ionomer built according to the conventional simulation method of the fuel cells membrane. The final ionomer MD models have a strong phase separation and water channel that is one of the important characteristics of the perfluorinated ionomer, and are stable and water-insoluble under excessive water and high temperature conditions. In the ionomer MD models built in this study, the excess water molecules decrease an ion conductivity due to the dilution of ions, but increase a hydrogen diffusivity. Therefore, it is necessary to design the molecular structure of ionomers for water electrolysis in experimental studies as well as molecular dynamics studies according to the characteristics of the water electrolysis system reported in this study.

A STUDY ON THE STAINING OF GLASS IONOMER CEMENT (Glass Ionomer Cement의 착색경향에 관한 연구)

  • Lee, Dong-Hoon;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.58-64
    • /
    • 1997
  • For the purpose of quantifying the staining rendency of light-cured glass ionomer cements and chemical-cured glass ionomer cements, Glass Ionomer specimens were stained with methylene blue and analyzed quantitatively with spectrophotometry. The data was processed and the result was as follows : 1. Chemical-cured glass ionomer cement showed higher color stability than light-cured glass ionomer cement with significance.(P<0.001) 2. In light-cured glass ionomer cement groups, Vitremer showed higher dye concentration of methylene blue than Fuji II LC. 3. In chemical-cured glass ionomer cement groups, Fuji II showed higher dye concentration of methylene blue than Ketac-fil.

  • PDF

ADAPTATION OF RESIN-MODIFIED GLASS IONOMER CEMENT TO DENTIN (상아질에 대한 광중합형 글라스 아이오노머 시멘트의 접합도)

  • Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.792-800
    • /
    • 1997
  • The purpose of this study was to evaluate the adaptation of self-cured glass ionomer cement and resin-modified glass ionomer cement and polyacid-modified resin composite, which are light-cured giass ionomer cements, to dentin surface. Twelve extracted human maxillary and mandibular molar teeth were used in this study. The entire occlusal dentin surfaces of teeth were exposed with Diamond Wheel Saw and smoothed with sand papers (300, 600, 1200grits). They were randomly assigned into 3 groups according to glass ionomer cements used; Control group- Fuji II, Expeimental group 1 - Fuji II LC, Expeimental group 2 - Dyract. According to the manufacturer's directions, three glass ionomer cements were bonded to exposed dentin surfaces of the tooth crown and cured. Crowns and glass ionomers were trimmed after 24hrs and sectioned horizontally and vertically with diamond saw. The interface of glass ionomer cements and dentin was examined under SEM. The results were as follows : 1. Good adatation between glass ionomer cement and dentin on the horizontal section was showed in control and experimental group 1, but the gap of $20{\mu}m$, which was observed distinct separation between glass ionomer cement and dentin, was showed in experimental group 2. 2. Good adatation between glass ionomer cements and dentin on the vertical section was showed in control and experimental group 1, but the gap of 80-$100{\mu}m$ was showed in experimental group 2. 3. Cohesive fracture within glass ionomer cements in control and experimental group 1 was showed, but no cohesive fracture was showed in experimental group 2.

  • PDF

THE EFFECT OF EARLY WATER CONTACT ON GLASS-IONOMER CEMENTS (Glass ionomer cement초기 경화시 수분접촉의 영향에 관한 연구)

  • Um, Chung-Moon;Oilo, Gudbrand
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.507-513
    • /
    • 1993
  • The purpose of this study was to observe the effect of immersion in water at 3, 5, 7, and 10 minutes after mixing on the surface of three regular and one light-curing glass-ionomer cement by measuring penetration of a methylene blue solution. Early solubility of these cements was also measured and compared with that of a zinc phosphate and a polycarboxylate cement. A blue-stained zone was observed in all glass-ionomer cement, but an inner, opaque zone was observed in only two of the regular glass-ionomer cements. Extending the time between start of mixing and immersion on water decreased the width of both zones in all cements and markedly lowered the loss of substance from the surface of regular glass-ionomer cements. However, time after mixing had no or only a limited effect on the loss of substance from the light-curing glass-ionomer cement, the zine phosphate cement, or the polycarboxylate cement.

  • PDF

Permeation Property of Ionomer Film with New Multifunctional Ionic Site (다관능기를 도입한 아이오노머 필름의 기체투과 특성)

  • Lee, Bo-Mi;Jeong, Sam-Bong;Nam, Sang-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.227-236
    • /
    • 2012
  • Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS (복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도)

  • Han, Jae-Ik;Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

AN EXPERIMENTAL STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN WITH THE VARIOUS SURFACE TREATMENTS OF LIGHT - CURED GLASS IONOMER CEMENTS (광중합형 Glass Ionomer Cement의 표면처리 방법에 따른 복합레진과의 결합력에 관한 실험적 연구)

  • Yong, Seung-Hee;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.421-430
    • /
    • 1992
  • The purpose of this study was to evaluate the bond strength between the composite resin and light - cured glass ionomer cement base / liners treated by the several methods. The light - cured glass ionomer cement(Vitrebond / Cavalite) were injected into cavites prepared in acrylic plates. One hundred and twenty specimens were uniformly prepared and devided into 3 groups. For the first group, primer was not applied to glass ionomer cement. For the second group, no application of primer was undertaken and light - curing procedure to uncured glass ionomer cement surface which was covered by bonding agent was undertaken. After bonding composite resin to light - cured glass ionomer surface, the specimens, were stored in $37^{\circ}C$, 100% humidity for 1 hour. The following results were obtained : 1. The omission of application of a primer did not produce a significantly poorer bond strength. 2. Light - curing technique to uncured glass ionomer cement which was covered by bonding agent did not produce a significantly poorer bonding strength. 3. The bond strength of Cavalite to composite resin was significantly higher than that of Vitrebond. 4. There was no significant difference between two different types of composite materials(Silux-Plus / Herculite XR) when it was applied to bond to glass ionomer cement.

  • PDF

Enhanced Crystallization of Bisphenol-A Polycarbonate by Organoclay in the Presence of Sulfonated Polystyrene Ionomers

  • Govindaiah, Patakamuri;Lee, Jung-Min;Lee, Seung-Mo;Kim, Jung-Hyun;Subramani, Sankaraiah
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.842-849
    • /
    • 2009
  • Polycarbonate (PC)/sulfonated polystyrene (SPS) ionomer/organoclay nanocomposites were prepared by a solution intercalation process using the SPS ionomer as a compatibilizer. The effect of an organoclay on the melt crystallization behavior of the ionomer compatibilized PC were examined by differential scanning calorimetry (DSC). The melt crystallization behavior of PC was dependent on the extent of organoclay dispersion. The effect of the ionomer loading and cation size on intercalation/exfoliation efficiency of the organoclay in PC/SPS ionomer matrix was also studied using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Dispersion of the organically modified clay in the polymer matrix improved with increasing ionomer compatibilizer loadings and cation size. The SPS ionomer compatibilized PC/organoclay nanocomposite showed enhanced melt crystallization compared to the SPS ionomer/PC blend. Well dispersed organoclay nanocomposites showed better crystallization than the poorly dispersed clay nanocomposites. These nanocomposites also showed better thermal stability than the SPS ionomer/PC blend.