• Title/Summary/Keyword: Ionized

Search Result 582, Processing Time 0.027 seconds

Characterization of submicron Particles Using a Single Particle Mass Spectrometer(I) - Non - Linear Correlation Between Particle Size and Mass Spectra Signals - (단일입자 질량분석기를 애용한 서브마이크론 입자의 특성화(I) - 입자의 크기와 질량분광신호의 비선형성 -)

  • Zachariah Michael R.;Lee Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.453-459
    • /
    • 2005
  • In this paper, we are proposing a robust tool which is capable of measuring the size and elemental composition of submicron particles from twenty to several hundreds nanometers at the same time, i.e., named Single Particle Mass Spectrometer (SPMS). The home-made SPMS employs a laser ablation/multi-photon ionization method to tear a nanoparticle into the constituent elemental ions. One thing different from the conventional Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is the power of the ionization laser. Much strong laser used in this work makes it possible to generate elemental ions rather than molecular ions from a nanoparticle. Also the use of high power laser may guarantee a complete ionization of a particle, which was confirmed by the existence of multiple charged ions. If a particle is evaporated/ionized completely and detected through electric field-free TOF tube without any loss, we can extract the original particle volume from the measured total ion numbers. Collecting a number of particles mass spectra, we get a database of size and elemental composition of nanoparticles, with which we may take a took into any kinds of chemical reaction occurring at nanoscale. Several issues related to size estimation by SPMS will be discussed.

The study of electron drift velocity in $CF_4+Ar$ molecular gas mixture by 2-term and multi-term approximation of the Boltzmann equation (다항근사 및 2항근사 볼츠만 방정식을 이용한 $CF_4+Ar$ 혼합기체의 전자이동속도 연구)

  • Song, Byoung-Doo;Ha, Sung-Chul;Jeon, Byoung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1179-1182
    • /
    • 2004
  • This paper describes the information for quantitative simulation of weakly ionized plasma. In previous paper, we calculated the electron transport coefficients in $CF_4+Ar$ gas mixture by using two-term approximation of Boltzmann equation. but there is difference between the result of the two-term and the multi-term approximation of the Boltzmann equation in $CF_4$ gas. Therefore, in this paper, we calculated the electron drift velocity (W) in $CF_4+Ar$ gas mixture for range of E/N values from $0.01\sim500[Td}$ at the temperature was 300[K] and pressure was 1[Torr] by multi-term approximation of the Boltzmann equation by Robson and Ness. The results of two-term and multi-term approximation of the Boltzmann equation has been compared with each other for a range of E/N.

  • PDF

Effects of Driving Force and Surfactant on the Formation of Ag Powders (Ag 입자의 형성에서 구동력 및 계면활성제의 효과)

  • Lee, Chang Geun;Kim, Donggyu;Lee, Sang Hwa;Lee, Hae Woo;Lee, Hyo Jong;Kim, Insoo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.860-867
    • /
    • 2011
  • This study was performed to investigate the effects of the driving force for reduction and the surfactant (polyacrylic acid) on the size of Ag particles. As the driving force for reduction increases, the size of particles decreases due to a decrease of initial nuclei-size. Also, an increase of pH increases the amount of ionized surfactant, which leads to a decrease of particle size due to the prevention of particle growth. Both the driving force and the surfactant may affect the particle size, but the surfactant appeared to be a more dominant factor than reduction potential in terms of controlling the particle size. An increase of surfactant in the range of pH=3-4 decreases the size of Ag particles, although the reduction potential also decreases.

Synthesis and Characterization of Thallium (Ⅲ) Complexes with Tetracyanoquinodimethane, TI$(TCNQ)_3$ and $TICI_2(TCNQ)_{2.5}$

  • 김미경;김영인;문성배;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.424-428
    • /
    • 1996
  • TlCl2(TCNQ)2.5 and Tl(TCNQ)3 were obtained from the reaction of LiTCNQ (TCNQ=tetracyanoquinodimethane) and TlX3 (X=Cl and NO3). These compounds were characterized by spectroscopic(IR, UV, EPR), electrochemical methods, and electrical conductivity measurements. Thermal analysis (TG, DSC) was also conducted. The room temperature electrical conductivities of these compounds are in the range of semiconductors. Spectroscopic studies indicate that Tl(TCNQ)3 has fully ionized TCNQ- ions in a form of simple salt, whereas TlCl2(TCNQ)2.5 is consisted of TCNQ- and TCNQ0 as a complex salt. EPR values of TCNQ- radical anion are 1.999 in both compounds and the signal attributable to metal ion is not observed, suggesting that any unpaired electrons are localized on TCNQ radicals, and metal atoms have diamagnetic state. Ligand decomposition and reduction process are simultaneously progressed in both compounds above at 200 ℃. The endothermic activation energy of TlCl2(TCNQ)2.5 is shown somewhat larger than that of Tl(TCNQ)3, it may be due to Tl-Cl bond strength. The mid-peak potentials of these compounds are very similar to those of TCNQ and the values of Epa and Epc are almost equal to 1. The wave of thallium ion is not detected in cyclic voltammogram, hence the redox processes of the complexes might be mainly localized to the TCNQ ligand rather than thallium ion.

Influence of Change of Ni Concentration in Baths Fabricated by Dissolving Metal Ni Powders on Properties of Electrodeposited Ni Film (금속 Ni 분말을 용해하여 제조된 용액에서 Ni 농도 변화가 전기도금 된 Ni 필름 특성에 미치는 영향)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • Chloride baths for electrodeposited Ni thin films were fabricated by dissolving metal Ni powders with the mixed solution consisting of HCl and de-ionized water. Current efficiency, residual stress, surface morphology and microstructure of Ni films with the change of metal ion ($Ni^{2+}$) concentrations in the plating solution were studied. Current efficiency was measured to be more than 90% with increasing $Ni^{2+}$ concentrations in the plating solution. Residual stress of Ni thin film was increased from about 400 to 780 MPa with increasing $Ni^{2+}$ concentration from 0.2 to 0.5 M. It is gradually decreased to 650 MPa at 0.9 M $Ni^{2+}$ concentration. Smooth surface morphologies were observed over 0.3 M $Ni^{2+}$ concentration, but nodule surface morphology at 0.2 M. Ni films consist of FCC(111), FCC(200), FCC(220) and FCC(311) peaks in XRD patterns. Preferred orientation of FCC(111) was observed and its intensity was slightly decreased with increasing $Ni^{2+}$ concentration. The average grain size was slightly increased at 0.3 M $Ni^{2+}$ concentration and then slightly decreased with increasing $Ni^{2+}$ concentration.

Physical Properties of Molecular Clouds in NGC 6822 Hubble V

  • Lee, Hye-In;Pak, Soojong;Oh, Heeyoung;Le, Huynh Anh N.;Lee, Sungho;Lim, Beomdu;Tatematsu, Ken'ichi;Park, Sangwook;Mace, Gregory;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.66.4-66.4
    • /
    • 2019
  • NGC 6822 is a dwarf irregular galaxy whose metal abundance is lower than of the Large Magellanic Cloud. Hubble V is the brightest HII complex where molecular clouds surround the core cluster of OB stars. Because of its proximity (d = 500 kpc), we can resolve the star-forming regions on parsec scales (1 arcsec = 2.4 pc). Using the high-resolution (R = 45,000) near-infrared spectrograph, IGRINS, we observed molecular hydrogen emission lines from photo-dissociation regions (PDRs) and $Br{\gamma}$ emission line from ionized regions. In this presentation, we compare our data PDR models in order to derive the density distribution of the molecular clouds on parsec scales and to estimate the total mass of the clouds.

  • PDF

The Infrared Medium-deep Survey. VII. Optimal selection for faint quasars at z ~ 5 and preliminary results

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.75.1-75.1
    • /
    • 2019
  • The universe has been ionized in the post-reionization by several photon contributors. The dominant source to produce the hydrogen ionizing photons is not revealed so far. Faint quasars have been expected to generate UV photon budgets required to maintain ionization state of universe. Observational limits, however, hinder to discover them despite their higher number density than bright one. Consequently, the influence of faint quasars on post-reionization are not considered sufficiently. Therefore, a survey to find faint quasars at z ~ 5 is crucial to determine the main ionizing source in the post-reionization era. Deep images from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) allow us to search for quasar swith low luminosities in the ELAIS-N1 field. J band information are obtained by the Infrared Medium-deep Survey (IMS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep ExtragalacticSurvey (DXS). Faint quasar candidates were selected from several multi-band color cut criteria based on simulated quasars on color-color diagram. To choose the reliable candidates with possible Lyman break, we have performed medium-bands observations. Whether a candidate is a quasar or a dwarf star contamination was decided by results from chi-square minimization of quasar/dwarf model fitting. Spectroscopic follow-up observations confirm three quasars at z ~ 5. 100% spectral confirmation success rate implies that the medium-band observations effectively select faint quasars with strong Lyman alpha emission.

  • PDF

Optimization of Plasma Process to Improve Plasma Gas Dissolution Rate using Three-neck Nozzle (3구 노즐을 이용한 플라즈마 가스 용존율 향상을 위한 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2021
  • The dissolution of ionized gas in dielectric barrier plasma, similar to the principle of ozone generation, is a major performance-affecting factor. In this study, the plasma gas dissolving performance of a gas mixing-circulation plasma process was evaluated using an experimental design methodology. The plasma reaction is a function of four parameters [electric current (X1), gas flow rate (X2), liquid flow rate (X3) and reaction time (X4)] modeled by the Box-Behnken design. RNO (N, N-Dimethyl-4-nitrosoaniline), an indictor of OH radical formation, was evaluated using a quadratic response surface model. The model prediction equation derived for RNO degradation was shown as a second-order polynomial. By pooling the terms with poor explanatory power as error terms and performing ANOVA, results showed high significance, with an adjusted R2 value of 0.9386; this indicate that the model adequately satisfies the polynomial fit. For the RNO degradation, the measured value and the predicted values by the model equation agreed relatively well. The optimum current, gas flow rate, liquid flow rate and reaction time were obtained for the highest desirability for RNO degradation at 0.21 A, 2.65 L/min, 0.75 L/min and 6.5 min, respectively.

Remote handling systems for the Selective Production of Exotic Species (SPES) facility

  • Giordano Lilli ;Lisa Centofante ;Mattia Manzolaro ;Alberto Monetti ;Roberto Oboe;Alberto Andrighetto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.378-390
    • /
    • 2023
  • The SPES (Selective Production of Exotic Species) facility, currently under development at Legnaro National Laboratories of INFN, aims at the production of intense RIB (Radioactive Ion Beams) employing the Isotope Separation On-Line (ISOL) technique for interdisciplinary research. The radioactive isotopes of interest are produced by the interaction of a multi-foil uranium carbide target with a 40 MeV 200 μA proton beam generated by a cyclotron proton driver. The Target Ion Source (TIS) is the core of the SPES project, here the radioactive nuclei, mainly neutron-rich isotopes, are stopped, extracted, ionized, separated, accelerated and delivered to specific experimental areas. Due to efficiency reasons, the TIS unit needs to be replaced periodically during operation. In this highly radioactive environment, the employment of autonomous systems allows the manipulation, transport, and storage of the TIS unit without the need for human intervention. A dedicated remote handling infrastructure is therefore under development to fulfill the functional and safety requirement of the project. This contribution describes the layout of the SPES target area, where all the remote handling systems operate to grant the smooth operation of the facility avoiding personnel exposure to a high dose rate or contamination issues.

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures (반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성)

  • Minjeong Lee;Gayoung Yoon;Gyeong Hee Ryu
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.222-228
    • /
    • 2023
  • Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.