Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.11.860

Effects of Driving Force and Surfactant on the Formation of Ag Powders  

Lee, Chang Geun (Department of Metallurgical Engineering, Dong-A University)
Kim, Donggyu (Department of Metallurgical Engineering, Dong-A University)
Lee, Sang Hwa (Department of Metallurgical Engineering, Dong-A University)
Lee, Hae Woo (Department of Metallurgical Engineering, Dong-A University)
Lee, Hyo Jong (Department of Metallurgical Engineering, Dong-A University)
Kim, Insoo (Department of Metallurgical Engineering, Dong-A University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.11, 2011 , pp. 860-867 More about this Journal
Abstract
This study was performed to investigate the effects of the driving force for reduction and the surfactant (polyacrylic acid) on the size of Ag particles. As the driving force for reduction increases, the size of particles decreases due to a decrease of initial nuclei-size. Also, an increase of pH increases the amount of ionized surfactant, which leads to a decrease of particle size due to the prevention of particle growth. Both the driving force and the surfactant may affect the particle size, but the surfactant appeared to be a more dominant factor than reduction potential in terms of controlling the particle size. An increase of surfactant in the range of pH=3-4 decreases the size of Ag particles, although the reduction potential also decreases.
Keywords
electrical/electronic materials; chemical synthesis; nucleation; SEM; Ag powder;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Z. Liu, B. X. Qui, and H. Wang, Advanced Powder Technology, (in press).
2 W. Songping and M. Shuyuan, Materials Chemistry and Physics 89, 423 (2005).   DOI   ScienceOn
3 W. Zhang, X. Qiao, and J. Chen, Chemical Physics 330, 495 (2006).   DOI   ScienceOn
4 H. Y. Lee, J. Kor. Inst. Resource Recycling 15, 19 (2006).
5 L. X. Liao and J. Kenan, Rare Metal Materials and Engineering 33, 558 (2004).
6 Z. Khan, S. Al-Thabaiti, E. H. EI-Mossalamy, and A. Y. Obaid, Colloids and Surface B: Biointerfaces 73, 284 (2009).   DOI   ScienceOn
7 K. S. Yun, Y. C. Park, B. S. Yang, H. H. Min, and C. W. Won, J. Kor. Powder Metall. Inst. 12, 56 (2005).   DOI   ScienceOn
8 G. Guo, W. Gan, J. Luo, F. Xiang, J. Zhang, H. Zhou and H. Liu, Applied Surface Science 256, 6683 (2010).   DOI   ScienceOn
9 J. Yang, L. Qi, D. Zhang, J. Ma, and H. Cheng, Crystal Growth and Design 4, 1371 (2004).   DOI   ScienceOn
10 B. An, X. Cai, F. Wu, and Y. Wu, Trans. Nonferrous Met. Soc. China 20, 1550 (2010).   DOI   ScienceOn
11 I. M. Yakutik, G. P. Shevchenko, and S. K. Rakhmanov, Colloids and Surfaces A: Physicochem. Eng. Aspects 242, 175 (2004).   DOI   ScienceOn
12 X. Sun, S. Dong, and E. Wang, J. Colloid and Interface Science 290, 130 (2005).   DOI   ScienceOn
13 G. Tosun and H.D. Glicksman, US patent 4,979,985.
14 J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Jung, and B. G. Kim, Materials Science Forum 539/543, 2782 (2007).
15 H. Nakui, K. Okitsu, Y. Maeda, and R. Nishimura, Ultrasonics Sonochemistry 14, 627 (2007).   DOI   ScienceOn
16 O. Neikov, S. S. Naboychenko and G. Dowson, Handbook of Nonferrous Metal Powder, $1^{st}$ ed., p.172-173, Elesevier, New York (2009).
17 B. Viswanath, Paromita Kundu, and N. Ravishankar, J. colloid and Interface Science 330 , 211 (2009).   DOI   ScienceOn
18 Tian-Song Deng, Qi-Feng Zhang, Jun-Yan Zhang, Xin shen, Kong-Tao Zhu, and Jun-Lei Wu, J. colloid and Interface Science 329, 292 (2009).   DOI   ScienceOn
19 M. Miranda-Hernandez, M. Palomar-Pardave, N. Batina, and I. Gonzalez, J. Electroanalytical Chemistry 443, 81 (1998).   DOI   ScienceOn
20 S. CHIBOWSKI, and M. PASZKIEWICZ, Physicochemical Problems of Mineral Processing 40, 175 (2006).