• Title/Summary/Keyword: Ionization Chamber

Search Result 235, Processing Time 0.019 seconds

Design and development of enhanced criticality alarm system for nuclear applications

  • Srinivas Reddy, Padi;Kumar, R. Amudhu Ramesh;Mathews, M. Geo;Amarendra, G.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.690-697
    • /
    • 2018
  • Criticality alarm systems (CASs) are mandatory in nuclear plants for prompt alarm in the event of any criticality incident. False criticality alarms are not desirable as they create a panic environment for radiation workers. The present article describes the design enhancement of the CAS at each stage and provides maximum availability, preventing false criticality alarms. The failure mode and effect analysis are carried out on each element of a CAS. Based on the analysis, additional hardware circuits are developed for early fault detection. Two different methods are developed, one method for channel loop functionality test and another method for dose alarm test using electronic transient pulse. The design enhancement made for the external systems that are integrated with a CAS includes the power supply, criticality evacuation hooter circuit, radiation data acquisition system along with selection of different soft alarm set points, and centralized electronic test facility. The CAS incorporating all improvements are assembled, installed, tested, and validated along with rigorous surveillance procedures in a nuclear plant for a period of 18,000 h.

High Dose Rate Ir-192 Source Calibration Method with Newly Designed Calibration Jig (고선량 Ir-192선원 교정기의 제작 및 특성)

  • Yi, Byong-Yong;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.299-303
    • /
    • 1989
  • Authors have developed highly reproducible calibration method for the Micro-Selectron HDR Ir-192 system (Nucletron, Motherland). The new jig has a 10cm radius circular hole in the $30cm{\times}30cm{\times}0.2cm$ acrylic plate, and 5F flexible bronchial tubes are attached around the hole. The source moves along the circle in the tubes and the ionization chamber is placed verticaly at the center of the circular hole (center of the jig). Dose distribution near the center was derived theoretically, and measured with the film dosimetry system. Theoretical calculation and measurement show the error margin below $0.1\%$ for 1mm or 2mm position deviation. We have measured at 12 and 24 points of circle with 1, 6, 11 and 21 second dwell time of source in order to calculate the activity of the source. Measurements have been repeated daily for 50 days. The accuracy and the reproducibility are below $1\%$ error margin. The half life of the source from our measurement is estimated $73.4\pm0.4$ days.

  • PDF

GEANT4-based Monte Carlo Simulation of Beam Quality Correction Factors for the Leksell Gamma Knife® PerfexionTM

  • Schaarschmidt, Thomas;Kim, Tae Hoon;Kim, Yong Kyun;Yang, Hye Jeong;Chung, Hyun-Tai
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1814-1820
    • /
    • 2018
  • With the publication of TRS-483 in late 2017 the IAEA has established an international code of practice for reference dosimetry in small and non-standard fields based on a formalism first suggested by Alfonso et al. in 2008. However, data on beam quality correction factors ($k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$) for the Leksell Gamma $Knife^{(R)}$ $Perfexion^{TM}$ is scarce and what little data is available was obtained under conditions not necessarily in accordance with the IAEA's recommendations. This study constitutes the first systematic attempt to calculate those correction factors by applying the new code of practice to Monte Carlo simulation using the GEANT4 toolkit. $k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$ values were determined for three common ionization chamber detectors and five different phantom materials, with results indicating that in most phantom materials, all chambers were well suited for reference dosimetry with the Gamma $Knife^{(R)}$. Similarities and differences between the results of this study and previous ones were also analyzed and it was found that the results obtained herein were generally in good agreement with earlier PENELOPE and EGSnrc studies.

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Feasibility of Two Dimensional Ion Chamber Array for a Linac Periodic Quality Assurance (선형가속기의 품질관리를 위한 2차원이온전리함배열의 유용성)

  • Lee, Jeong-Woo;Hong, Se-Mie;Park, Byung-Moon;Kang, Min-Young;Kim, You-Hyun;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Aim of this study is to investigate the feasibility of 2D ion chamber array as a substitute of the water phantom system in a periodic Linac QA. For the feasibility study, a commercial ion chamber matrix was used as a substitute of the water phantom in the measurement for a routine QA beam properties. The device used in this study was the I'm RT MatriXX (Wellhofer Dosimetrie, Germany). The MatriXX consists of a 1,020 vented ion chamber array, arranged in $24{\times}24\;cm^2$ matrix. Each ion chamber has a volume of $0.08\;cm^3$, spacing of 0.762 cm. We investigated dosimetric parameters such as dose symmetry, energy ($TPR_{20,10}$), and absolute dose for comparing with the water phantom data with a Farmer-type ionization chamber (FC65G, Wellhofer Dosimetrie, Germany). For the MatriXX measurements, we used the white polystyrene phantom (${\rho}:\;1.18\;g/cm^3$) and also considered the intrinsic layer (${\rho}:\;1.06\;g/cm^3$, t: 0.36 cm) of MatriXX to be equivalent to water depth. In the preliminary study of geometrical QA using MatriXX, the rotation axis of collimator and half beam junction test were included and compared with film measurements. Regarding the dosimetrical QA, the MatriXX has shown good agreements within ${\pm}1%$ compared to the water phantom measurements. In the geometrical test, the data from MatriXX were comparable with those from the films. In conclusion, the MatriXX is a good substitute for water phantom system and film measurements. In addition, the results indicate that the MatriXX as a cost-effective novel QA tool to reduce time and personnel power.

  • PDF

Air Density Correction of Ionization Chamber using $^{90}Sr$ Radioactive Check Device ($^{90}Sr$ 방사성 동위원소를 이용한 전리함의 대기 보정계수 측정)

  • Park, Sung-Y.;Kim, Woo-C.;Shin, Dong-O.;Ji, Young-H.;Kwon, Soo-I.;Lee, Kil-D.;Cho, Young-K.;Loh, John-J.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.267-271
    • /
    • 1998
  • It is required to measure air density correction factor at the time of absorbed dose calibration or measurement. In general, thermometer and barometer are widely used for air density correction. However, this can be done using the radioactive check device with better accuracy. The measurements of air density correction were performed by using the radioactive check device, Unidos electrometer, and 0.6 cc Farmer-type ion chamber of PTW under the different environmental conditions. Above experiments were repeated with thermometer and barometer. By comparing the two methods, they were within the difference of 0.2 %. The overall uncertainty for the dose found in thermometer and barometer was 1.2 - 1.6 %, depending upon either one step or two, whereas the overall uncertainty for the radioactive check device was 1.02 %. This method may reduce the possible error which could occur when thermometer and barometer are not calibrated at regular basis.

  • PDF

Analysis of Relative Output Factors for Cyberknife: Comparison of Son Chambers, Diode Detector and Films (사이버나이프 출력인자 분석: 전리함, 다이오드 검출기 및 필름)

  • Jang Ji-Sun;Shin Dong-Oh;Choi Byung-Ock;Lee Tae-Kyu;Choi Ihl-Bohng;Kim Moon-Chan;Kwon Soo-Il;Kang Young-Nam
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • The accuracy of the dosimetry in the Cyberknife system is accomplishing important role from all processes of the stereotactic radiosurgery. In this study, we estimated relative output factors for Cyberknife. All measurements were peformed by six different detectors: diode detector, X-Omat V film, Gafchromic EBT film, 0.015 cc, 0.125 cc and 0.6 cc ionization chamber The diode detector and three ionization chambers peformed using water phantom at 80 cm SSD and 1.5 cm depth. When the film measurements were peformed, the water phantom was replaced with a solidwater phantom. Each collimator normalized with respect to the output factor of the largest collimator (60 mm). For the collimators over than 30 mm, the output factors from the different detectors showed a good agreement within 0.5% except 0.6 cc ion chamber For the collimators less than 15 mm, there were substantial differences In the output factors among different detectors. That is, the value of output factor for the 5 mm collimator of a diode and Gafchromic film was each $0.656{\pm}0.009$ and $0.777{\pm}0.013$. In the ion chamber and diode detector, those difference were due to the presence of large dose gradients and lack of electronic equilibrium in narrow megavoltage x-ray beams Therefore, the Gafchromic EBT film were considered more accurate than the others detectors.

  • PDF

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy (고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구)

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

  • PDF

10 MV X-ray Beam Dosimetry by Water and White Polystyrene Phantom (물과 백색폴리스티렌 팬텀에 의한 10 MV X-선 빔 선량계측)

  • Kim, Jong-Eon;Cha, Byung-Youl;Kang, Sang-Sik;Park, Ji-Koon;Sin, Jeong-Wook;Kim, So-Yeong;Jo, Seong-Ho;Son, Dae-Woong;Choi, Chi-Won;Park, Chang-Hee;Yoon, Chun-Sil;Lee, Jong-Duk;Park, Byung-Do
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • The purpose of this study is to get the correction factor to correct the measured values of the absolute absorbed dose proportional to the water equivalent depth. The measurement conditions in white polystyrene and water phantoms for 10MV X-ray beam are that the distance of source to center of ionization chamber is fixed at SAD 100 cm, the field sizes are $10{\times}10\;cm^2$, $20{\times}20\;cm^2$ and the depths are 2.3 cm, 5 cm, 10 cm, and 15 cm, respectively. The mean value of ionization was obtained by three times measurements in each field size and depths after delivering 100 MU from linear accelerator with output of 400 MU per min to the two phantoms. The correction factor and the percentage deviation in TPR were obtained below 0.97% and 0.53%, respectively. Therefore, we can get high accuracy by using the correction factor and the percentage deviation in TPR in measuring the absolute absorbed dose with the solid water equivalent phantom.

  • PDF

Determination of Quality Factors for Cylindrical Ionization Chambers in kV X-rays: Review of IAEA Dosimetry Protocol and Monte Carlo Calculations and Measurements for N23333 and N30001 Chambers (kV X-선에서 원통형전리함의 선질인자 결정에 관한 연구: IAEA 프로토클 고찰과 N23333, N30001 전리함에 대한 몬테칼로 계산 및 측정)

  • Lee Kang Kyoo;Lim Chunil;Chang Sei Kyung;Moon Sun Rock;Jeong Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.53-61
    • /
    • 2005
  • The quality factors for cylindrical ionization chambers for kV X-rays were determined by Monte Carlo calculation and measurement. In this study, the X-rays of 60-300 kV beam (lSO-4037) installed in KFDA and specified in energy spectra and beam qualities, and the chambers of PTW N23333 and N30001 were investigated. In calculations, the $R_{\mu}\;and\;R_{Q,Q_{0}}$ in IAEA dosimetry protocols were determined from the air kerma and the cavity dose obtained by theoretical and Monte Carlo calculations. It is shown that the N30001 chamber has a flat response of $\pm1.7\%$ in $110\~300kV$ region, while the response range of two chambers were shown to $\pm3\~4\%$ in $80\~250kV$ region. From this work we have discussed dosimetry protocol for the kV X-rays and we have found that the estimation of energy dependency is more important to apply dosimetry protocol for kV X-rays.

  • PDF