• 제목/요약/키워드: Ionic polymer-metal composites(IPMC)

검색결과 24건 처리시간 0.027초

A dragonfly inspired flapping wing actuated by electro active polymers

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.867-887
    • /
    • 2010
  • An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

나피온/전도성 나노입자 전기방사 웹을 이용한 고성능 이온성 고분자-금속 복합체 구동기의 제조 (High-Performance Ionic Polymer-Metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs)

  • 정요한;이장우;유영태
    • 폴리머
    • /
    • 제36권4호
    • /
    • pp.434-439
    • /
    • 2012
  • 이온성 고분자-금속 복합체(ionic polymer-metal composite, IPMC) 구동기의 구동성능 향상을 위해 전기방사를 통해 제조된 나피온/전도성 나노입자 웹을 나피온 필름의 양면에 접합시켜 전해질막을 개질하였다. 전도성 나노입자는 다층탄소나노튜브(multiwalled carbon nanotube, MWNT)와 은 나노입자가 사용되었으며, 이를 각각 나피온 용액에 분산시켜 전기방사하였다. 개질된 IPMC는 향상된 구동변위, 응답속도 및 구동력을 나타내었으며 은 나노입자에 비해 MWNT가 더욱 뛰어난 구동변위와 구동력을 유도하였고, 전도성 나노입자가 포함되지 않은 전기방사 웹을 적용한 경우에도 성능향상이 관찰되었다. 제조된 IPMC의 우수한 구동성능은 전기방사 웹의 다공성에 의한 전해액 이동의 용이성, 고분산된 전도성 나노입자에 의해 유도된 높은 전기용량 및 낮은 전극 저항 때문인 것으로 분석되었다.

Performance Improvement of IPMC(Ionic Polymer Metal Composites) for a Flapping Actuator

  • Lee, Soon-Gie;Park, Hoon-Cheol;Pandita Surya D.;Yoo Young-Tai
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.748-755
    • /
    • 2006
  • In this paper, a trade-off design and fabrication of IPMC(Ionic Polymer Metal Composites) as an actuator for a flapping device have been described. Experiments for the internal solvent loss of IPMCs have been conducted for various combinations of cation and solvent in order to find out the best combination of cation and solvent for minimal solvent loss and higher actuation force. From the experiments, it was found that IPMCs with heavy water as their solvent could operate longer. Relations between length/thickness and tip force of IPMCs were also quantitatively identified for the actuator design from the tip force measurement of 200, 400, 640, and $800{\mu}m$ thick IPMCs. All IPMCs thicker than $200{\mu}m$ were processed by casting $Nafion^{TM}$ solution. The shorter and thicker IPMCs tended to generate higher actuation force but lower actuation displacement. To improve surface conductivity and to minimize solvent evaporation due to electrically heated electrodes, gold was sputtered on both surfaces of the cast IPMCs by the Physical Vapor Deposition(PVD) process. For amplification of a short IPMC's small actuation displacement to a large flapping motion, a rack-and-pinion type hinge was used in the flapping device. An insect wing was attached to the IPMC flapping mechanism for its flapping test. In this test, the wing flapping device using the $800{\mu}m$ thick IPMC. could create around $10^{\circ}{\sim}85^{\circ}$ flapping angles and $0.5{\sim}15Hz$ flapping frequencies by applying $3{\sim|}4V$.

이온성 고분자-금속 복합체의 수중 응용 (A Review : Underwater Applications of Ionic Polymer -Metal Composites)

  • 허석;제이슨파켓;김광진
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.981-990
    • /
    • 2004
  • Specialized propulsors for naval applications have numerous opportunities in terms of research, design and fabrication of an appropriate propulsor. One of the most important components of any propulsor is the actuator that provides the mode of locomotion. Ionomeric electro-active polymer may offer an attractive solution for locomotion of small propulsors. A common ionomeric electro-active polymer, ionic Polymer-Metal Composites (IPHCs) give large true bending deformations under low driving voltages, operate in aqueous environments, are capable of transduction and are relatively well understood. IPMC fabrication and operation are presented to further elucidate the use of the material for a propulsor. Various materials, including IPMCs, are investigated and a simplified propulsor model is explored.

손가락 외골격용 전기활성 고분자 구동체-센서 하이브리드 구조체의 굽힘 동작 제어 (Bending Motion Control of Electroactive Polymer Actuator-Sensor Hybrid Structure for Finger Exoskeleton)

  • 한동균;송대석;조재영;김동민
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.865-871
    • /
    • 2015
  • This study was conducted in order to develop a finger exoskeleton system using ionic polymer metal composites (IPMCs) as the actuator and sensor in a hybrid structure. To use the IPMC as an actuator producing large force, a first order transfer function was obtained using results from a block force for DC excitation that applied to two IPMCs of 20mm-width, 50mm-length, and 2.4mm thickness together. After which the validation of 200gf control with anti-windup PI controller was confirmed. A 5mm-width, 50mm-length, 0.6mm-thickness of IPMC was also modeled as a sensor for tip displacement. As a result, the IPMC sensor could been utilized as a trigger role for the actuator. Finally, an IPMC sensor and actuator were installed on the joint of a single DOF exoskeleton in the hybrid structure, and test for the control of 40gf of block force and predefined sequence of motion was performed.

나피온-알루미나 복합막을 사용한 이온성 폴리머-금속 복합체 작동기의 제작 및 성능 평가 (Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes)

  • 이장우;김우성;유영태
    • 폴리머
    • /
    • 제33권4호
    • /
    • pp.377-383
    • /
    • 2009
  • 전기활성 고분자 중의 하나인 이온성 폴리머-금속 복합체(ionic polymer-metal composites, IPMC) 작동기는 전압 인가 시 고분자전해질 내부에 존재하는 양이온과 물이 음극 방향으로 이동하면서 변위를 발생시킨다. 이러한 IPMC의 전해질은 높은 보습력, 프로톤 전도도 및 기계적 강도를 지녀야 하며, 이를 위해 본 연구에서는 IPMC의 고분자전해질인 나피온 층에 $\alpha$-, $\gamma$-알루미나를 $4{\sim}8$ wt%의 함량으로 도입하여 나피온-알루미나 복합막을 제조하고 그 특성을 확인하였다. 알루미나의 함량이 증가함에 따라, 나피온 복합막의 프로톤 전도도는 조금씩 감소하는 경향을 보였으며, $\alpha$-알루미나에 비해 $\gamma$-알루미나를 첨가하였을 때 전도도 감소가 더욱 컸다. 나피온-알루미나 복합막의 기계적 모듈러스는 37.16 MPa인 순수 나피온 막에 비해 모든 함량에서 $7{\sim}13\;MPa$ 높았다. 또한 준비된 나피온-알루미나 복합막을 이용하여 IPMC를 제작하였고 직류 3 V의 인가전압 하에서 작동성능을 평가하였다. 나피온-알루미나-IPMC, 특히 8 wt%의 $\alpha$-알루미나가 첨가된 IPMC는 기존 나피온-IPMC에 비해 작동변위는 2.7배 향상되었고 작동력 또한 크게 향상되었다. $\alpha$-알루미나의 첨가에 따른 작동성능의 향상은 $\gamma$-알루미나가 첨가된 복합막에 비해 상대적으로 높은 $\alpha$-알루미나 복합막의 양성자 전도도 그리고 잘 분산된 알루미나 입자 표면에 존재하는 다량의 수분에 의한 이온/물 이동의 용이성, 또한 순수 나피온 막에 비해 전해질 막과 백금전극 사이의 낮은 전기적 저항 때문인 것으로 결론지었다.

Sodium Montrnorillonite로 개질한 아크릴계 IPMC의 물성과 전기 구동 특성 (Properties and Performance of Electroactive Acrylic Copolymer-Platinum Composite Modified with Sodium Montrnorillonite)

  • 정한무;김병춘;라영수
    • 폴리머
    • /
    • 제29권4호
    • /
    • pp.380-384
    • /
    • 2005
  • Sodium montmoillonite 혹은 sodium montmorillonite가 삽입된 macromer의 존재 하에서 fluoroalkyl methacrylate와 아크릴산을 라디칼 공중합하여 불소화 아크릴계 이온성 고분자/sodium montmorillonite 복합재료를 제조하고, 이들의 X-선 회절 특성, 인장물성, 수분흡수율 등 물리적 성질을 조사하였다. 또, 이들을 이용하여 이온성 고분자-백금 복합재료(IPMC)를 제조하여 수 볼트의 외부 전위에 의한 전류 흐름 및 변위 거동을 측정한 결과, sodium montmorillonite가 이온의 이동을 방해하여 전류 및 변위량의 감소를 초래함을 관찰하였다.

Design, modelling and analysis of a new type of IPMC motor

  • Kolota, Jakub
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.223-231
    • /
    • 2019
  • The properties of Electroactive Polymer (EAP) materials are attracting the attention of engineers and scientists from many different disciplines. From the point-of-view of robotics, Ionic Polymer Metal Composites (IPMC) belong to the most developed group of the EAP class. To allow effective design of IPMC-actuated mechanisms with large induced strains, it is necessary to have adequate analytical tools for predicting the behavior of IPMC actuators as well as simulating their response as part of prototyping methodologies. This paper presents a novel IPMC motor construction. To simulate the bending behavior that is the dominant phenomenon of motor movement process, a nonlinear model is used. To accomplish the motor design, the IPMC model was identified via a series of experiments. In the proposed model, the curvature output and current transient fields accurately track the measured responses, which is verified by measurements. In this research, a three-dimensional Finite Element Method (FEM) model of the IPMC motor, composed of IPMC actuators, simultaneously determines the mechanical and electrical characteristics of the device and achieves reliable analysis results. The principle of the proposed drive and the output signals are illustrated in this paper. The proposed modelling approach can be used to design a variety of controllers and motors for effective micro-robotic applications, where soft and complex motion are required.

The Performance of Nafion-Based IPMC Actuators Containing Polypyrrole/Alumina Composite Fillers

  • Lee, Jang-Woo;Kim, Ji-Hye;Chun, Yoon-Soo;Yoo, Young-Tai;Hong, Soon-Man
    • Macromolecular Research
    • /
    • 제17권12호
    • /
    • pp.1032-1038
    • /
    • 2009
  • A polypyrrole (PPy)/alumina composite filler prepared via in-situ polymerization of pyrrole on alumina particles was incorporated into $Nafion^{(R)}$ to improve the performance of ionic polymer-metal composite (IPMC) actuators. The IPMCs with the pristine PPy without alumina support did not show bending displacements superior to that of the bare Nafion-based IPMC, except at a high PPy content of 4 wt%. This result was attributed to the low redox efficiency of the PPy alone in the IPMC and may have also been related to the modulus of the IPMC. However, at the optimized filler contents, the cyclic displacement of the IPMCs bearing the PPy/alumina filler was 2.2 times larger than that of the bare Nafion-based IPMC under an applied AC potential of 3 Vat 1 Hz. Even under a low AC potential of 1.5 V at 1 Hz, the displacement of the PPy/alumina-based IPMCs was a viable level of performance for actuator applications and was 2.7 times higher than that of the conventional Nafion-based IPMC. The generated blocking force was also improved with the PPy/aiumina composite filler. The greatly enhanced performance and the low-voltage-operational characteristic of the IPMCs bearing the PPy/alumina filler were attributed to the synergic effects of the neighboring alumina moiety near the PPy moiety involving electrochemical redox reactions.