• Title/Summary/Keyword: Ionic compound

Search Result 78, Processing Time 0.025 seconds

Role of Electrode Reaction of Electrolyte in Electrokinetic-Fenton Process for Phenanthrene Removal (동전기-펜턴 공정에서 전해질의 전극반응이 처리효율에 미치는 영향)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • The effects of electrolytes were investigated on the removal efficiency when several different electrolytes were used to change the electrode reaction in an electrokinetic (EK)-Fenton process to remediate phenanthrene-contaminated soil. Electrical potential gradient decreased initially due to the ion entrance into soil and then increased due to the ion extraction from soil under the electric field. Accumulated electroosmotic flow was $NaCl>KH_2PO_4>MgSO_4$ at the same concentration because the ionic strength of $MgSO_4$ was the highest and $Mg(OH)_2$ formed near the cathode reservoir plugged up soil pore to inhibit water flow. When hydrogen peroxide was contained in electrolyte solution, removal efficiency increased by Fenton reaction. When NaCl was used as an electrolyte compound, chlorine ($Cl_2$) was generated at the anode and dissolved to form hypochlorous acid (HClO), which increased phenanthrene removal. Therefore, the electrode reaction of electrolyte in the anode reservoir as well as its transport into soil should be considered to improve removal efficiency of EK-Fenton process.

Model Study of the Fate of Hydrocarbons in the Soil-Plant Environment (녹지 토양내 탄화수소화합물의 분포변화에 관한 모델링 연구)

  • Yoon-Young Chang;Kyung-Yub Hwang
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1996
  • In recent years, phytoremediation, the use of plants to detoxify hydrocarbons, has been a promising new area of research, particularly in situ cleanup of large volumes of slightly contaminated soils. There is increasing need for a mathematical model that can be used as a predictive tool prior to actual field implementation of such a relatively new technique. Although a number of models exist for solute-plant interaction in the vegetated zone of soil, most of them have focused on ionic nutrients and some metals. In this study, we developed a mathematical model for simulation of bioremediation of hydrocarbons in soil, associated with plant root systems. The proposed model includes root interactions with soil-water and hydrocarbons in time and space, as well as advective and dispersive transport in unsaturated soil. The developed model considers gas phase diffusion and liquid-gas mass exchanges. For simulation of temporal and spatial changes in root behavior on soil-water and with hydrocarbons, time-specific distribution of root quantity through soil was incorporated into the simulation model. Hydrocarbon absorption and subsequent uptake into roots with water were simulated with empirical equations. In addition, microbial activity in the rhizosphere, a zone of unique interaction between roots and soil microorganisms, was modeled using a biofilm theory. This mathematical model for understanding and predicting fate and transport of compound in plant-aided remediation will assist effective application of plant-aided remediation to field contamination.

  • PDF

Studies on the Semicarbazone Formation of Mono substituted Benzaldehydes (일치환 Bezaldehyde 의 Semicarbazone 생성 반응에 관한 연구)

  • Kim, Yong-In;Kim, Chang-Mean
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.93-105
    • /
    • 1990
  • Semicarbazone formation of nine monosubstituted benzaldehydes was studied kinetically in 20% methanol buffer solution at 15, 25, 35, and $45^{circ}C$. The rate of p-nitrobenzaldehyde semicarbazone formation is 2.7 times as fast as that of benzaldehyde, while p-hvdroxybenzaldehyde is 3.6 times as slow as that of benzaldehyde. Activation energies for p-chlorobenzaldehyde, benzaldehyde, p-methylbenzaldehyde, p-methoxybenzaldshyde, p-hydroxybenzaldehyde, and p-dimethylaminobenzaldehyde semicarbazone formation are calculated as 5.80, 6.19, 6.57, 7.06, 8.03, and 6.46 kcal/mol respectively. It is concluded from the effect of ionic strength that the reaction is affected by not ions but neutral molecules involving hydrogen bonding between oxygen atom of carbonyl group and hydrogen atom of acid-catalyst, and concerted attack of the necleophilic reagent, free base on carbonyl compound. Also, the effect of solvent composition is small in 20% and 50% methanol (and ethanol) aqueous solutions. The ${\rho}-{\sigma}$ plots for the rates of semicarbazone formation at pH 7.1 show a linear ${\rho}-{\sigma}$ relationship (${\rho}=0.14l$, in contrast to that at pH 2.75 and pH 5.4 corresponding to ${\rho}-{\sigma}$ correlations reparted by Jencks. The rate of semicarbazone formation at pH 5.4 show a relationship which is convex upward, resulting in a break in the curve but at pH 2.75, slight difference from a linear relationship. As a result of studying citric acid catalysis, second-order rate constants increase linearly with citric acid concentration and show a 2 times increase as the catalyst concentration is varied from 0.025 to 0.1 mol/1 at pH 2,9, but slight increase at pH 5.3. The rate-determining step is addition below pH 5 but is dehydration between pH 5 and 7. Conclusively, the rate-determining step of the reaction changes from dehydration to addition in respect to hydrogen ion activity near pH 5. The ortho: para rate ratio of the hydroxybenzaldehydes for semicarbazone formation is about 17 at $15^{\circ}C$. It is concluded that the results constitute strong evidence in favor of greater stabilization of p- than o-hydroxybenzaldehyde by substituent which donate electrons by resonance and is due to hydrogen bonding between the carbon-bound hydrogen of the-CHO group and the oxygen atom of the substituent.

Pressure Effects on the Ionic Dissociation of $[Co(en)]_3Cl_3\;and\;[Co(NH_3)_6Cl_3$ in Aqueous Solutions (수용액에서 $[Co(en)_3]Cl_3$$[Co(NH_3)_6]Cl_3$착물의 이온 해리에 미치는 압력의 영향)

  • Jong Jae Chung;Rho Byung Gill
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.335-450
    • /
    • 1986
  • The thermodynamic dissociation constants of $[Co(en)]_3Cl_3\;and\;[Co(NH_3)_6Cl_3$ in aqueous solutions at $25{\circ}$ and at the pressure from 1 bar to 2000 bars were measured by conductometric method. The dissociation constants were increased with pressure elevation because of volume decreasing by the formation of charged ions during dissociation reaction. That is, the $pK^T$ values of $[Co(en)]_3Cl_3$ were 2.16 for I bar, 2.08 for 500 bars, 2,08 for 1000 bars, 2.05 for 1500 bars and 2.03 for 2000 bars, respectively and those of $[Co(NH_3)_6Cl_3$ were 2.02 for 1 bar 1.96 for 500 bars, 1.90 for 1000 bars, 1. 88 for 1500 bars and 1. 87 for 2000 bars, respectively. Comparing and analyzing the values of Stokes' radii and $K^T$, the formation of ion pair compound was affected by not only the electrostatic interaction, but also the Interal Conjugate Base(ICB), which was increased by the elevation of the pressure.

  • PDF

The Study of Evaluation Methods of Electrolyte for Li/SO2Cl2 Battery (Li/SO2Cl2 전지용 전해액의 평가 방법 연구)

  • Roh, Kwang Chul;Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Ko, Young-Ok;Lee, Jeong-Do;Chung, Kwang-il;Shin, Dong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • The cathodic active material of $Li/SO_2Cl_2$ battery is $SO_2Cl_2$, which is the solvent of an electrolyte. It is referred to as a catholyte, a compound word of cathode and electrolyte. As the battery discharges, the catholyte burns out. And thus, the characteristics of the $SO_2Cl_2$ in the battery determine the capacity. In addition, the transition minimum voltage (TMV) and the voltage delay deviation of $Li/SO_2Cl_2$ battery are due to the passivation film formed by the reaction between an electrolyte and Li. Impurities in the electrolyte, such as moisture or heavy metal ions, will accelerate the growth of the passivation film. Therefore, a technology must be established to purify an electrolyte and to ensure the effectiveness of the purification method. In this research, $LiAlCl_4/SO_2Cl_2$ was manufactured using $AlCl_3$ and LiCl. Its concentration, the amount of moisture, and the metal amount were evaluated using an ionic conductivity meter, a colorimeter, and FT-IR.

Characterization of Low-Temperature Pyrolysis and Separation of Cr, Cu and As Compounds of CCA-treated Wood (CCA (Chromated Copper Arsenate) 처리 목재의 저온 열분해와 CCA 유효 성분분리 특성)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This study was carried out to separate the heavy toxic metals in eco-building materials by low-temperature pyrolysis, especially arsenic (As) compounds in CCA wood preservative as a solid in char. The pyrolysis was carried out to heat the CCA-treated Hemlock at $280^{\circ}C$, $300^{\circ}C$, $320^{\circ}C$, and $340^{\circ}C$ for 60 mins. Laboratory scale pyrolyzer composed of [preheater$\rightarrow$pyrolyzer$\rightarrow$1st water scrubber$\rightarrow$2nd bubbling flask with 1% $HNO_3$ solution$\rightarrow$vent], and was operated to absorb the volatile metal compound particulates at the primary water scrubber and the secondary nitric acid bubbling flask with cooling condenser of $4^{\circ}C$ under nitrogen stream of 20 mL/min flow rate. And the contents of copper, chromium and arsenic compounds in its pyrolysis such as carbonized CCA treated wood, 1st washing and 2nd washing liquors as well as its raw materials, were determined using ICP-AES. The results are as follows : 1. The yield of char in low-temperature pyrolysis reached about 50 percentage similar to the result of common pyrolytic process. 2. The higher the pyrolytic temperature was, the more the volatiles of CCA, and in particular, the arsenic compounds were to be further more volatile above $320^{\circ}C$, even though the more repetitive and sequential monitorings were necessary. 3. More than 85 percentage of CCA in CCA-treated wood was left in char in such low-temperature pyrolytic condition at $300^{\circ}C$. 4. Washing system for absorption of volatile CCA in this experiment required much more contacting time between volatile gases and water to prevent the loss of CCA compounds, especially the loss of arsenic compound. 5. Therefore, more complete recovery of CCA components in CCA-treated wood required the lower temperature than $320^{\circ}C$, and the longer contacting time of volatile gases and water needed the special washing and recovery system to separate the toxic and volatile arsenic compounds in vent gases.

Development of Immediate Face Lifting Technology for Reducing Wrinkles by Using Film-Forming Agent (피막 형성제를 이용한 즉각 리프팅 기술 개발)

  • Jun, Ji hyun;Ko, Eun ah;Han, Sang Gun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • Instant face lifting cosmetics contain various film forming agents for stretching the wrinkles on the skin surface. But, most of the film-forming polymers have sticky feels. And they are easily scrubbed out when skin is rubbed on. In this study, we focused on the influence of sodium silicate that has rapid film forming effect on skin surface and immediate wrinkle reducing effect. Sodium silicate, also known as water glass or soluble glass, is a compound containing sodium oxide and silica. Sodium silicate is a white powder that is readily soluble in water, producing an alkaline solution. Sodium silicate is stable in neutral and alkaline solutions. The sodium silicate solution hardens by drying in air and rapidly forms a thin film. When the solution is applied to the skin, the fine membrane coating is formed by water evaporation and ionic bond re-formation. It also makes the strong siloxane (Si-O) bonding on the skin surface. When these fixation properties are applied to cosmetics, they can give remarkable skin tightening effect. The sodium silicate solution can provide the lifting effect by forming a film on skin at a proper concentration. But, skin irritation may be caused with too high concentration of sodium silicate. We studied a desirable range of the sodium silicate concentration and combination with other fixatives for skin care formulation that has no sticky feels and no scrubbing out phenomenon. Immediate lifting gel was developed by using sodium silicate and various thickening systems. Among of the various thickeners, aluminum magnesium silicate showed the best compatibility with sodium silicate for rapid lifting effect. This instant physical lifting gel was confirmed as a low stimulating formula by skin clinical test.

Studies on the Physical and Chemical Denatures of Cocoon Bave Sericin throughout Silk Filature Processes (제사과정 전후에서의 견사세리신의 물리화학적 성질변화에 관한 연구)

  • 남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.1
    • /
    • pp.21-48
    • /
    • 1974
  • The studies were carried out to disclose the physical and chemical properties of sericin fraction obtained from silk cocoon shells and its characteristics of swelling and solubility. The following results were obtained. 1. The physical and chemical properties of sericin fraction. 1) In contrast to the easy water soluble sericin, the hard soluble sericin contains fewer amino acids include of polar side radical while the hard soluble amino acid sach as alanine and leucine were detected. 2) The easy soluble amino acids were found mainly on the outer part of the fibroin, but the hard soluble amino acids were located in the near parts to the fibroin. 3) The swelling and solubility of the sericin could be hardly assayed by the analysis of the amino acid composition, and could be considered to tee closely related to the compound of the sericin crystal and secondary structure. 4) The X-ray patterns of the cocoon filament were ring shape, but they disappeared by the degumming treatment. 5) The sericin of tussah silkworm (A. pernyi), showed stronger circular patterns in the meridian than the regular silkworm (Bombyx mori). 6) There was no pattern difference between Fraction A and B. 7) X-ray diffraction patterns of the Sericin 1, ll and 111 were similar except interference of 8.85A (side chain spacing). 8) The amino acids above 150 in molecular weight such as Cys. Tyr. Phe. His. and Arg. were not found quantitatively by the 60 minutes-hydrolysis (6N-HCI). 9) The X-ray Pattern of 4.6A had a tendency to disappear with hot-water, ether, and alcohol treatment. 10) The partial hydrolysis of sericin showed a cirucular interference (2A) on the meridian. 11) The sericin pellet after hydrolysis was considered to be peptides composed with specific amino acids. 12) The decomposing temperature of Sericin 111 was higher than that of Sericin I and II. 13) Thermogram of the inner portioned sericin of the cocoon shell had double endothermic peaks at 165$^{\circ}C$, and 245$^{\circ}C$, and its decomposing temperature was higher than that of other portioned sericin. 14) The infrared spectroscopic properties among sericin I, II, III and sericin extracted from each layer portion of the cocoon shell were similar. II. The characteristics of seriein swelling and solubility related with silk processing. 1) Fifteen minutes was required to dehydrate the free moisture of cocoon shells with centrifugal force controlled at 13${\times}$10$^4$ dyne/g at 3,000 R.P.M. B) It took 30 minutes for the sericin to show positive reaction with the Folin-Ciocaltue reagent at room temperature. 3) The measurable wave length of the visible radiation was 500-750m${\mu}$, and the highest absorbance was observed at the wave length of 650m${\mu}$. 4) The colorimetric analysis should be conducted at 650mu for low concentration (10$\mu\textrm{g}$/$m\ell$), and at 500m${\mu}$ for the higher concentration to obtain an exact analysis. 5) The absorbing curves of sericin and egg albumin at different wave lengths were similar, but the absorbance of the former was slightly higher than that of the latter. 6) The quantity of the sericin measured by the colorimetric analysis, turned out to be less than by the Kjeldahl method. 7) Both temperature and duration in the cocoon cooking process has much effect on the swelling and solubility of the cocoon shells, but the temperature was more influential than the duration of the treatment. 8) The factorial relation between the temperature and the duration of treatment of the cocoon cooking to check for siricin swelling and solubility showed that the treatment duration should be gradually increased to reach optimum swelling and solubility of sericin with low temperature(70$^{\circ}C$) . High temperature, however, showed more sharp increase. 9) The more increased temperature in the drying of fresh cocoons, the less the sericin swelling and solubility were obtained. 10) In a specific cooking duration, the heavier the cocoon shell is, the less the swelling and solubility were obtained. 11) It was considered that there are differences in swelling or solubility between the filaments of each cocoon layer. 12) Sericin swelling or solubility in the cocoon filament was decreased by the wax extraction.. 13) The ionic surface active agent accelerated the swelling and solubility of the sericin at the range of pH 6-7. 14) In the same conditions as above, the cation agent was absorbed into the sericin. 15) In case of the increase of Ca ang Mg in the reeling water, its pH value drifted toward the acidity. 16) A buffering action was observed between the sericin and the water hardness constituents in the reeling water. 17) The effect of calcium on the swelling and solubility of the sericin was more moderate than that of magnecium. 18) The solute of the water hardness constituents increased the electric conductivity in the reeling water.

  • PDF