• Title/Summary/Keyword: Ionic bond

Search Result 91, Processing Time 0.024 seconds

The Influence of Surface Treatment and Opaque Application Methods on the Bond Strength of PFM Restorations (모래분사법과 불투명 도재의 도포방법이 도재용착주조관의 전단결합강도에 미치는 영향)

  • Kim, Sung-Min;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Purpose: This study was investigated the bonding strength of two kinds of Ni-Cr alloy with respect to the condition of surface treatment. Methods: The surface treatment was performed on the two kinds of Ni-Cr alloy (B alloy and R alloy) specimens, which were sandblasted with $50{\mu}m$, $110{\mu}m$, and $250{\mu}m$ aluminium oxide and were treated with opaque application (paste and wash opaque). The roughness on the surfaces of the specimens was observed. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: The BA250 specimen, which has higher surface roughness, showed the highest bonding strength in B specimens. In R specimens, the bonding strength of RA110 specimen was the highest. Conclusion: B specimen formed a mechanical bond between metal-ceramic interfaces; however, in the case of R specimen, a chemical bond was formed between that interfaces. There was no significant statistical difference between the bonding strengths of two types of specimens (p>0.05).

An Analysis of Concept Description and Model and Student Understanding About Ionic Compound in Textbooks Developed Under the 2009 Revised National Curriculum (2009 개정 교육과정에 따른 교과서에서 이온 화합물의 설명 개념과 모형 및 학생 이해도 분석)

  • Shin, He Young;Woo, Ae Ja
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.362-373
    • /
    • 2016
  • In this study, ionic compound in the science textbooks developed under the 2009 revised national curriculum were analyzed in terms of the scientific concept and model description and the student understanding through the questionnaires. Analysis of textbooks was performed for science2 of middle school and chemistry I & II of high school. Questionnaire was carried out with 194 students including middle school 2nd grade and high school 1st-3rd grade. The results are as follows: First, as a result of analysis of textbooks, scientific concepts and models used to explain the ionic compound showed differences depending on the types of textbooks. In addition, scientific models were provided with or without explanation for the scientific concepts. Second, analysis of the questionnaire showed that students didn’t properly understood scientific concepts and models in the ion formation, stoichiometric ratio between ions.

A Study on Synthesis and Properties of Polyurethane Dispersion Adhesives

  • Park, Dong Kyu;Kim, Chung Gi;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Polyurethane dispersion (PUD) polymers were synthesized by using polyether and polyester polyol. The effect of ionomeric centers, r(NCO / OH) values, chain extender process, and chain extender types on the adhesion properties was investigated. In the case of polyether-based PUD, the ionic center, r value, chain extension process and chain extender types were not adjusted even after adjustment. In the case of polyester-based PUD, when the ionic center content was more than 2.5%, the state of adhesive strength was $2.0kgf/cm^2$ or more. On the other hand, the initial adhesive strength was excellent at about $1kgf/cm^2$ when the ionic center content was over 3.5%. When the r value was 1.3 or more, it was found that the initial bonding strength and the state of bonding strength were excellent at about $1kgf/cm^2$ and $2.1kgf/cm^2$ or higher, respectively. An IR spectrum analysis of the synthesized PUD confirmed that PUD was composed of urethane based on the N-H characteristic peak at $3340cm^{-1}$ and the urethane characteristic peak at $1730cm^{-1}$. Moreover, the characteristic peaks of the isocyanate ($2260cm^{-1}$) used in the preparation of the prepolymer were not observed. As a result, the residual -NCO was not observed, and urethane was completely synthesized.

A Conformational Study of Oligosaccharides Investigated by Tandem Mass Spectrometry and Molecular Modeling

  • Eunsun Yoo Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.293-297
    • /
    • 2001
  • The purpose of this paper is to introduce the simplified linkage position determination method using tandem mass spectrometry combined with molecular modeling study. Using low energy tandem mass spectrometric experiments and molecular modeling, it has been suggested that significant differences in glycosidic bond cleavage may occur due not only to ionic considerations but also may have contributions from steric hindrance of the absorbance of collision energy, leading to a statistically higher bond cleavage for sterically crowded linkages. Permethylated derivatives of the linkage-isomeric trisaccharides give useful fragmentation ratios and productions, including a 3-linkage specific ion. The ratios of fragment ions are related to the ability of each linkage position in the oligosaccharide to absorb collisional energy.

Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

  • Shim, Youngseon;Kim, Hyung J.;Jung, YounJoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3601-3606
    • /
    • 2012
  • Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium ($BMI^+$), but different anions, hexafluorophosphate ($PF_6{^-}$) and chloride ($Cl^-$). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent $BMI^0Cl^0$, a non-ionic counter-part of $BMI^+Cl^-$. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of $BMI^+Cl^-$ and $BMI^0Cl^0$ shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic $BMI^+Cl^-$, compared with those in more hydrophobic $BMI^+PF_6{^-}$. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

The Influence of Bonding Strength and Interface Characteristics to Bonding Agent and Veneer Ceramics on Metal-Ceramic Prosthetics (결합재와 베니어세라믹이 금속-세라믹 보철물의 전단결합강도와 계면특성에 미치는 영향)

  • Kim, Min-Jung;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Purpose: In this study, for the reasons of observing the changes when using bonding agent with Ni-Cr alloy and Co-Cr alloy and using VM13 and Vintage MP ceramic which have the disparity in coefficient of thermal expansion, it is carried out to evaluate the characteristics of the bonding agent through the analysis of the interface between metal and ceramic and the analysis of bond strength by variable. Methods: The surface treatment was performed on the two kinds of alloy(Ni-Cr alloy and Co-Cr alloy) specimens, which were sandblasted and were treated with bonder application. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: As a result of observation of metal-ceramic interfacial properties, it was observed that Cr atoms were spread from the alloy body to the ceramic floor in the specimen of Group B. It was also seen that Cr, W atoms were spread from the alloy body to the ceramic floor in the specimen of Group S. In consequence of observing Shear bond strength, it was calculated that the specimen of BSV was 27.75(${\pm}11.21$)MPa, BSM was 27.02(${\pm}5.23$)MPa, BCV was 30.20(${\pm}5.99$)MPa, BCM was 27.94(${\pm}10.76$)MPa, SSV was 20.83(${\pm}2.58$)MPa, SSM was 23.98(${\pm}3.94$)MPa, SCV was 32.32(${\pm}4.68$)MPa, and SCM was 34.54(${\pm}10.63$)MPa. Conclusion: In the metal-ceramic interface of Bellabond plus sample group, diffusion of Cr atoms was incurred and diffusion of C Cr atoms and W atoms in the sample group of $Starloy{(R)}\;C$ was observed. Using bonding agent showed the higher bond strength than using the sand blasting treatment. In the Bellabond plus alloys, the specimen group with the use of binding materials showed higher shear bond strength, but didn't show statistically significant differences (p>0.05). In the $Starloy{(R)}\;C$ alloys, the specimen group with the use of binding materials showed higher shear bond strength and statistically significant differences(p<0.05). In terms of VM13 ceramic, it was in the Bellabond plus alloys that the high shear bond strength was showed, but there's no statistically significant differences(p>0.05). In terms of Vintage MP ceramic, it was in the $Starloy{(R)}\;C$ alloys that the high shear bond strength was showed and statistically significant differences(p<0.05). Metal-ceramic to fracture of the shear strength measurements and an analysis of all aspects of military usage fracture of the composite, respectively.

Electrokinetic Studies on Nylon and Wool/Acid Dye System (나일론과 양모/산성염료계에 대한 계면동전위적 연구)

  • 박병기;김진우;김찬영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF

Two Anhydrous Zeolite X Crystal Structures, $Pd_{18}Ti_{56}Si_{100}Al_{92}O_{384} and Pd_{21}Tl_{50}Si_{100}Al_{92}O_{384}$

  • Yun, Bo Yeong;Song, Mi Gyeong;Lee, Seok Hui;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • The crystal structures of fully dehydrated $Pd^{2+}$ - and $TI^{+}$ -exchanged zeolite X, $Pd_{18}TI_{56}Si_{100}Al_{92}O_{384}(Pd_{18}TI_{50-}X$, a = $24.935(4)\AA$ and $Pd_{21}TI_{50}Si_{100}Al_{92}O_{384}(Pd_{21}TI_{50-}X$ a = $24.914(4)\AA)$, have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd3 at $21(1)^{\circ}C.$ The crystals were prepared using an exchange solution that had a $Pd(NH_3)_4Cl_2\;:TINO_3$ mole ratio of 50 : 1 and 200 : 1, respectively, with a total concentration of 0.05M for 4 days. After dehydration at $360^{\circ}C$ and 2 ${\times}$$10^{-6}$ Torr in flowing oxygen for 2 days, the crystals were evacuated at $21(1)^{\circ}C$ for 2 hours. They were refined to the final error indices $R_1$ = 0.045 and $R_2$ = 0.038 with 344 reflections for $Pd_{18}Tl_{56-}X$, and $R_1$ = 0.043 and $R_2$ = 0.045 with 280 reflections for $Pd_{21}Tl_{50-}X$; I > $3\sigma(I).$ In the structure of dehydrated $Pd_{18}Tl_{56-}X$, eighteen $Pd^{2+}$ ions and fourteen $TI^{+}$ ions are located at site I'. About twenty-seven $TI^{+}$ ions occupy site II recessed $1.74\AA$ into a supercage from the plane of three oxygens. The remaining fifteen $TI^{+}$ ions are distributed over two non-equivalent III' sites, with occupancies of 11 and 4, respectively. In the structure of $Pd_{21}Tl_{50-}X$, twenty $Pd^{2+}$ and ten $TI^{+}$ ions occupy site I', and one $Pd^{2+}$ ion is at site I. About twenty-three $TI^{+}$ ions occupy site II, and the remaining seventeen $TI^{+}$ ions are distributed over two different III' sites. $Pd^{2+}$ ions show a limit of exchange (ca. 39% and 46%), though their concentration of exchange was much higher than that of $TI^{+}$ ions. $Pd^{2+}$ ions tend to occupy site I', where they fit the double six-ring plane as nearly ideal trigonal planar. $TI^{+}$ ions fill the remaining I' sites, then occupy site II and two different III' sites. The two crystal structures show that approximately two and one-half I' sites per sodalite cage may be occupied by $Pd^{2+}$ ions. The remaining I' sites are occupied by $TI^{+}$ ions with Tl-O bond distance that is shorter than the sum of their ionic radii. The electrostatic repulsion between two large $TI^{+}$ ions and between $TI^{+}$ and $Pd^{2+}$ ions in the same $\beta-cage$ pushes each other to the charged six-ring planes. It causes the Tl-O bond to have some covalent character. However, $TI^{+}$ ions at site II form ionic bonds with three oxygens because the super-cage has the available space to obtain the reliable ionic bonds.

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF

Electrical Properties of Lead Free (1-x)(Na0.5K0.5) NbO3-xLiNbO3 Piezoelectric Ceramics

  • Park, Jong-Ho;Park, Hui-Jin;Choi, Byung-Chun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.721-725
    • /
    • 2016
  • This work focuses on the electrical conduction mechanism in a lead free ($Na_{0.5}K_{0.5}NbO_3$ ; NKN) ceramics system with $LiNbO_3$ content of approximately critical concentration $x{\geq}0.2$. Lead free $(1-x)(Na_{0.5}K_{0.5})NbO_3-x(LiNbO_3)$, $NKN-LN_x$ (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient $k_p$ decreases and the phase transition temperature $T_c$ increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ${\varepsilon}^{\prime}$ and $k_BT{\varepsilon}^{\prime\prime}$ showed anomalies around $T_c$ ($462^{\circ}C$ in the NKN-LN0.1 and $500^{\circ}C$ in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as $E_I=1.76eV$ (NKN-LN0.1) and $E_I=1.55eV$ (NKN-LN0.2), above $T_c$, and $E_{II}=0.78$ (NKNL-N0.1) and $E_{II}=0.81$ (NKN-LN0.2) below $T_c$. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of $Li^+$ ions.