Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.12.721

Electrical Properties of Lead Free (1-x)(Na0.5K0.5) NbO3-xLiNbO3 Piezoelectric Ceramics  

Park, Jong-Ho (Department of Science Education, Chinju National University of Education)
Park, Hui-Jin (Department of Physics, Pukyong National University)
Choi, Byung-Chun (Department of Physics, Pukyong National University)
Publication Information
Korean Journal of Materials Research / v.26, no.12, 2016 , pp. 721-725 More about this Journal
Abstract
This work focuses on the electrical conduction mechanism in a lead free ($Na_{0.5}K_{0.5}NbO_3$ ; NKN) ceramics system with $LiNbO_3$ content of approximately critical concentration $x{\geq}0.2$. Lead free $(1-x)(Na_{0.5}K_{0.5})NbO_3-x(LiNbO_3)$, $NKN-LN_x$ (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient $k_p$ decreases and the phase transition temperature $T_c$ increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ${\varepsilon}^{\prime}$ and $k_BT{\varepsilon}^{\prime\prime}$ showed anomalies around $T_c$ ($462^{\circ}C$ in the NKN-LN0.1 and $500^{\circ}C$ in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as $E_I=1.76eV$ (NKN-LN0.1) and $E_I=1.55eV$ (NKN-LN0.2), above $T_c$, and $E_{II}=0.78$ (NKNL-N0.1) and $E_{II}=0.81$ (NKN-LN0.2) below $T_c$. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of $Li^+$ ions.
Keywords
Pb-free; electrical conductivity; dielectric; piezoelectric; ionic hopping;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Xu, Ferroelectric Materials and Their Applicarions, North-Holland (1991).
2 Y. Guo, K. Kakimoto and H. Ohsato, Solid State Commun., 129, 279 (2004).   DOI
3 M. Matubara, T. Yamaguchi, K. Kikuta and S. Hirano, Jpn. J. Appl. Phys., 44, 258 (2005).   DOI
4 B. Jaffe, R. S. Roth and S. marzullo, J. Appl. Phys., 25, 809 (1954).   DOI
5 H. Ouchi, K. Nagano and S. Hayakawa, J. Am. Ceram. Soc., 48 630 (1965).   DOI
6 S.-E. Park and T. R. Shout, J. Appl. Phys., 42, 6086 (2003).   DOI
7 Y. Sugaya, K. Shoji and Koichiro, Jpn. J. Appl. Phys., 42, 6086 (2003).   DOI
8 Z. Yu, R. Guo and A. S. Bhalla, J. Mater. Lett., 57, 349 (2002).   DOI
9 H. Nagata and T. Taketaka, Jpn. J. Appl. Phys., 36, 6055 (1997).   DOI
10 Y. Guo, K. Kakimoto and H. Ohsato, Appl. Phys Lett., 85, 4121 (2004).   DOI
11 H.-Y. Park, C.-W. Ahn, H.-C. Song, J.-H. Lee and S. Nahm, Appl. Phys. Lett., 89, 062906 (2006).   DOI
12 Y.-W. No, Y.-B. Yoo, S.-M. Son, and S.-T. Chung, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 717 (2006).
13 Y. Dai, X. Zhzng and G. Zhou, Appl. Phys. Lett., 90, 262903 (2007).   DOI
14 Y. Guo, K. Kakimoto and H. Ohsato, Jpn, J. Appl. Phys., 43, 6662 (2004).   DOI
15 Y. Guo, K. Kakimoto and H. Ohsato, Mater. Lett., 59, 241 (2005).   DOI
16 I. Ramajo, R. Parra, M. A. Ramirez and M. S. Castro, Bull. Mater.Sci., 34, 1213 (2011).   DOI
17 H.-Y. Park, K.-H. Cho, D.-S. Paik, S. Nahm, H.-G. Lee and D.-H. Kim, J. Appl. Phys., 124101, 102 (2007).   DOI
18 Z. S. Ahn and W. A. Schulze, J. Am. Ceram. Soc., 70, 18 (1987).
19 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature (London, U. K.), 432, 84 (2004).   DOI
20 Y. Guo, K. Kakimoto and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004).   DOI
21 S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang and J. F. Wang, J. Appl. Phys., 100, 104108 (2006).   DOI
22 G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi, B. Q. Ming, J. Du, L. M. Zheng, S. J. Zhang and T. R. Shrout, Appl. Phys. Lett., 88, 212908 (2006).   DOI
23 H. J. Park, H. J. Park and B. C. Choi, Trans. Electr. Electron. Mater., 13, 297 (2012).   DOI
24 R. Wang, R. Xie, T. Sekiya and Y. Simoyo, Mater. Res. Bull., 39, 1709 (2004).   DOI
25 M. Matsubara, T. Yamaguchi, K. Kikuta and S. Hirano, Jpn. J. Appl. Phys., 44, 258 (2005).   DOI
26 S. H. Park, C. W. Ahn, S. Nahm and J. S. Song, Jpn. J. Appl. Phys., 43, 1072 (2004).   DOI
27 A. J. Dekker, Solid State Physics, Macmillan (1969).