• Title/Summary/Keyword: Ionic Center

Search Result 345, Processing Time 0.028 seconds

Stoichiometry of $Ns^+/Ca^{2+}$ Exchange Quantified with Ion-selective Microelectrodes in Giant Excised Cardiac Membrane Patches

  • kang, Tong Mook;Hilgemann, Donald W.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.30-30
    • /
    • 2003
  • Without a definitive resolution of stoichiometry of cardiac Na$^{+}$-Ca$^{2+}$exchange (NCX), we cannot proceed to any quantitative analysis of exchange function as well as cardiac excitation-contraction coupling. The stoichiometry of cardiac NCX, however, is presently in doubt because reversal potentials determined by various groups range between those expected for a 3-to-1 and a 4-to-1 flux coupling. For a new perspective on this problem, we have used ion-selective microelectrodes to quantify directly exchanger-mediated fluxes of $Ca^{2+}$and Na$^{+}$in giant membrane patches. $Ca^{2+}$- and Na$^{+}$-selective microelectrodes, fabricated from quartz capillaries, are placed inside of the patch pipettes to detect extracellular ion transients associated with exchange activity. Ion changes are monitored at various distances from the membrane, and the absolute ion fluxes through NCX are determined via simulations of ion diffusion and compared with standard ion fluxes (Ca$^{2+}$ fluxes mediated by $Ca^{2+}$ ionophore, and Na$^{+}$ fluxes through gramicidin channels and Na$^{+}$/K$^{+}$pumps). Both guinea pig myocytes and NCX1-expressing BHK cells were employed, and for both systems the calculated stoichiometries for inward and outward exchange currents range between 3.2- and 3.4-to-1. The coupling ratios do not change significantly when currents are varied by changing cytoplasmic [Ca$^{2+}$] or by adding cytoplasmic Na$^{+}$. The exchanger reversal potentials, measured in both systems under several ionic conditions, range from 3.1- to 3.3-to-1. Taken together, a clear discrepancy from a NCX stoichiometry of 3-to-1 was obtained. Further definitive experiments are required to acquire a fixed number, and the present working hypothesis is that NCX current has an extra current via ‘conduction mode’.ent via ‘conduction mode’.

  • PDF

A Density Functional Theory Investigation on Intramolecular Hydrogen Transfer of the [Os3(CO)11P(OMe)3(Ru(η5-C5H5))2] Cluster

  • Buntem, Radchada;Punyain, Kraiwan;Tantirungrotechai, Yuthana;Raithby, Paul R.;Lewis, Jack
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.934-940
    • /
    • 2010
  • The reduction of [$Os_3(CO)_{11}P(OMe)_3$] and subsequent ionic coupling of the reduced species with $[Ru({\eta}^5-C_5H_5)(CH_3CN)_3]^+$ resulted in the formation of [$Os_3(CO)_{11}P(OMe)_3(Ru({\eta}^5-C_5H_5))_2$] which can be converted to spiked tetrahedral cluster, [$HOs_3(CO)_{11}P(OMe)_3Ru_2({\eta}^5-C_5H_5)(C_5H_4)$] via the intramolecular hydrogen transfer. Due to the unavailability of a suitable single crystal, the PW91/SDD and LDA/SDD density functional methods were used to predict possible structures and the available spectroscopic information (IR, NMR) of [$Os_3(CO)_{11}P(OMe)_3(Ru({\eta}^5-C_5H_5))_2$]. The most probable geometry found by constrained search is the isomer (a2) in which the phosphite, $P(OMe)_3$, occupies an axial position on one of the two osmium atoms that is edge bridged by the $Ru(CO)_2({\eta}^5-C_5H_5)$ unit. By using the most probably geometry, the predicted infrared frequencies and $^1H$, $^{13}C$ and $^{31}P$ NMR chemical shifts of the compound are in the same range as the experimental values. For this type of complex, the LDA/SDD method is appropriate for IR predictions whereas the OPBE/IGLO-II method is appropriate for NMR predictions. The activation energy and reaction energy of the intramolecular hydrogen transfer coupled with the structural change of the transition metal framework were estimated at the PW91/SDD level to be 110.32 and -0.14 kcal/mol respectively.

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Effect of n-Butyrate on the In Vitro Reactivation of Latent Herpes Simplex Virus (잠재성 Herpes Simplex Virus의 재활성화에 대한 n-Butyrate의 효과)

  • Chun, Yeon-Sook;Park, No-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.123-127
    • /
    • 1986
  • n-Butyrate (n-BT A) increased the rate and number of infectious units produced in the in vitro reactivation of latent herpes simplex virus. While the mechanism of action of n-BT A is obscure, a continuous presence of n-BT A is necessary for its inductive effect.

  • PDF

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1

  • Kim, Subin;Sung, Jongmin;Yeon, Jungyoon;Choi, Seung Hun;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.460-469
    • /
    • 2019
  • Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.

Thin-film optical waveguide $K^{+}$-ion sensor using the evanescent field absorption (소산장 흡수를 이용한 박막 광도파로형 칼륨이온센서)

  • Lee, Su-Mi;Koh, Kwang-Nak;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.214-220
    • /
    • 1997
  • A thin film optical waveguide sensor has been developed to measure and analyze quantitatively some inherent optical properties of biochemical substances. In this paper, two different kinds of thickness of thin film waveguide were prepared by RF sputtering of Corning-7059 glass(n = 1.588 at ${\lambda}=\;514nm$, Ar laser) on Pyrex glass substrates. We made a sensing membrane coated on the thin film waveguide with the poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (91 : 3 : 6) copolymer membrane based on $H^{+}$-selective chromoionophore and $K^{+}$-selective neutral ionophore and then proposed the thin film opptical waveguide ion sensor which can select a potassium ion. This sensor based ell the absorbance change by utilizing chromoionophore and neutral ionophore, which changes their absorption spectrum in the UV-vis region upon complexation of the corresponding ionic species, have been reported. The sensitivity dependence of the proposed sensor on interaction length, waveguide thickness, and content of a chromoionophore was investigated. This sensor has the measurement range of $10^{-6}M{\sim}1M$ for $K^{+}$ concentration and 90% response time of duration within 1 min. Also, our thin film optical waveguide sensor using the evanescent field was investigated as compared with conventional transmission sensor or optode sensor by the optical fiber. The sensitivity of thin-film waveguide $K^{+}$ sensor is higher than that of the conventional transmission sensor. The proposed sensor is expected to be useful to biochemical, medical, environmental inspection and so on.

  • PDF

Selection of transgenic Solanum nigrum L. used environmental remediation expressing organomercurial lyase (Organomercurial lyase 유전자를 도입한 환경정화용 형질전환 까마중(Solanum nigrum) 선발)

  • Choi, Kyung-Hwa;Kim, Yong-Ho;Chung, Hyen-Mi;Choi, Young-Im;Noh, Eun-Woon;Kim, Hyun-Soon;Jeon, Jae-Heung
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.291-298
    • /
    • 2008
  • Methylmercury, an organic derivative, is the principal form of mercury that biomagnifies and causes neurodegenerative symptoms in animals. In recent years, living modified organism (LMO) resulting from biotechnology has played a highly visible and controversial role. Despite the potential benefits of this technology, public concerns have been raised about the environmental risk of LMO. The concern on the risk from LMO release has urged efforts to evaluate and manage the risks of the LMO. To build up the capacity building of risk assessment method for LMO used environmental remediation, we engineered Solanum nigrum L, expressing the modified bacterial gene, merB, encoding organomercurial lyase. Two independently isolated transgenic lines produced merB RNA. Transgenic Solanum nigrum leaf discs expressing merB gene showed organic mercury resistance, forming shoots well on growth medium containing $0.5{\mu}M$ methylmercury (II) chloride and $1{\mu}M$ phenylmercuric acetate while control plants breached. Transgenic merB seeds germinated and grew on growth medium containing $2{\mu}M$ methylmercury (II) chloride and phenylmercuric acetate. The merB transgenic plants will be used for risk assessment of natural environment.

Effect of Applied DC Electric Fields in Flame Spread over Polyethylene-Coated Electrical Wire (폴리에틸렌 피복전선 화염의 전파에 영향을 미치는 직류전기장의 인가 효과에 관한 실험적 연구)

  • Jin, Young-Kyu;Kim, Min-Kuk;Park, Jeong;Chung, Suk-Ho;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ${\pm}7$ kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet.

Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: a single tertiary center experience in Korea

  • Jin, Bo Kyung;Bang, Ji Seok;Choi, Eun Young;Kim, Gi Beom;Kwon, Bo Sang;Bae, Eun Jung;Noh, Chung Il;Choi, Jung Yun;Kim, Woong Han
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.3
    • /
    • pp.125-129
    • /
    • 2013
  • Purpose: The use of implantable cardioverter defibrillators (ICDs) to prevent sudden cardiac death is increasing in children and adolescents. This study investigated the use of ICDs in children with congenital heart disease. Methods: This retrospective study was conducted on the clinical characteristics and effectiveness of ICD implantation at the department of pediatrics of a single tertiary center between 2007 and 2011. Results: Fifteen patients underwent ICD implantation. Their mean age at the time of implantation was $14.5{\pm}5.4$ years (range, 2 to 22 years). The follow-up duration was $28.9{\pm}20.4$ months. The cause of ICD implantation was cardiac arrest in 7, sustained ventricular tachycardia in 6, and syncope in 2 patients. The underlying disorders were as follows: ionic channelopathy in 6 patients (long QT type 3 in 4, catecholaminergic polymorphic ventricular tachycardia [CPVT] in 1, and J wave syndrome in 1), cardiomyopathy in 5 patients, and postoperative congenital heart disease in 4 patients. ICD coils were implanted in the pericardial space in 2 children (ages 2 and 6 years). Five patients received appropriate ICD shock therapy, and 2 patients received inappropriate shocks due to supraventricular tachycardia. During follow-up, 2 patients required lead dysfunction-related revision. One patient with CPVT suffered from an ICD storm that was resolved using sympathetic denervation surgery. Conclusion: The overall ICD outcome was acceptable in most pediatric patients. Early diagnosis and timely ICD implantation are recommended for preventing sudden death in high-risk children and patients with congenital heart disease.

Structural analysis and thermal expansion property of Cu doped LSM for SOFCs (Cu가 도핑된 LSM의 구조분석과 열팽창특성 연구)

  • Noh, Tai-Min;Ryu, Ji-Seung;Kim, Jin-Seong;Jeong, Cheol-Weon;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.175-180
    • /
    • 2011
  • The doping effect of Cu in the Sr-doped lanthan manganites (LSM) has been investigated in terms of structural analysis and thermal expansion coefficient (TEC). The $La_{0.8}Sr_{0.2}Mn_{1-x}Cu_xO_3$ ($0{\leq}x{\leq}0.3$) were prepared by solid state reaction method and their crystal structure and TEC were measured. A decrease in the lattice parameters and the TEC were observed with increase eu content, whereas they were decreased for x = 0.3. For $0{\leq}x{\leq}0.2$, the decrease of the lattice parameter and the TEC with increase Cu content were attributed to the reduction of ionic radius of Cu ions due to the presence of $Cu^{3+}$ ions. For x = 0.3, however, the increase was originated from the formation of oxygen vacancies due 10 the presence of $Cu^{2+}$ and $Mn^{4+}$.