• Title/Summary/Keyword: Ion-milling

Search Result 187, Processing Time 0.03 seconds

FIB milling on nanostencil membrane (나노스텐실 제작을 위한 FIB 밀링 특성)

  • Kim G.M.;Chung S.I.;Oh H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • FIB (Focused ion Beam) milling on a 500-nm-thick silicon nitride membrane was studied in order to fabricate a high-resolution shadow mask, or called a nanostencil. The silicon nitride membrane was fabricated by MEMS processes of LPCVD, photolithography, ICP etching and bulk silicon etching. The apertures made by FIB milling and normal photolithography were compared. The square metal pattern deposited through FIB milled shadow mask showed 6 times smaller comer radius than the case of photolithography. The results show high resolution patterning could be achieved by local deposition through FIB milled shadow-mask.

  • PDF

Study on Surface Damage of Specimen for Transmission Electron Microscopy(TEM) Using Focused Ion Beam(FIB) (집속 이온빔을 이용한 투과 전자 현미경 시편의 표면 영향에 관한 연구)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.8-12
    • /
    • 2010
  • TEM is a powerful tool for semiconductor material analyses in structure or biological sample in micro structure. TEM observation need to make to coincide specimens for special purpose. in this paper, we have experimented for minimum surface damage on bulk wafer and patterned specimen by various conditions such as accelerating energy, depth of ion beam, ion milling types, and etc. in various specimen preparation methods by FIB (Focus Ion Beam). The optimal qualified specimens are contain low mounts of surface damage(about 5 nm) on patterned specimen.

A Review of Ion Beam Technology (이온빔 기술 리뷰)

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.493-496
    • /
    • 2011
  • In this paper, ion beam technology was investigated mainly through the published papers. There are two different types of method application. One method is to remove the material from the substrate, the other one is deposited to the surface of the substrate or specimen. Based on the literature review there are 3-4 times more published research papers related to the deposition than those of the removal.

  • PDF

Atom Probe Tomography: A Characterization Method for Three-dimensional Elemental Mapping at the Atomic Scale

  • Choi, Pyuck-Pa;Povstugar, Ivan
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • The present paper gives an overview about the Atom Probe Tomography technique and its application to powder materials. The preparation of needle-shaped Atom Probe specimens from a single powder particle using focused-ion-beam milling is described. Selected experimental data on mechanically alloyed (and sintered) powder materials are presented, giving insight into the atomic-scale elemental redistribution occurring under powder metallurgical processing.

Structure of a Plasma Ion Source for a Cross-Section SEM Sample (SEM 단면 시료 제작을 위한 플라즈마 이온원의 구조)

  • Won, Jong-Han;Jang, Dong-Young;Park, Man-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.400-406
    • /
    • 2015
  • This study researched the structure of the source of an ion milling machine used to fabricate a scanning electron microscope (SEM) sample. An ion source is used to mill out samples of over 1 mm dimension using a broad ion beam to generate plasma between the anode and cathode using a permanent magnet. To mill the sample in the vacuum chamber, the ion source should be greater than 6 kV for a positive ion current over $200{\mu}A$. To discover the optimum operating conditions for the ion miller, the diameter of the extractor, anode shape, and strength of the permanent magnet were varied in the experiments. A silicon wafer was used as the sample. The sputter yield was measured on the milled surface, which was analyzed using the SEM. The wafer was milled by injecting 1 sccm of argon gas into the 0.5 mTorr vacuum chamber.

Ion Beam Induced Micro/Nano Fabrication: Modeling (이온빔을 이용한 마이크로/나노 가공: 모델링)

  • Kim, Heung-Bae;Hobler, Gerhard
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.108-115
    • /
    • 2007
  • 3D nano-scale manufacturing is an important aspect of advanced manufacturing technology. A key element in ability to view, fabricate, and in some cases operate micro-devices is the availability of tightly focused particle beams, particularly of photons, electrons, and ions. The use of ions is the only way to fabricate directly micro-/ nano-scale structures. It has been utilized as a direct-write method for lithography, implantation, and milling of functional devices. The simulation of ion beam induced physical and chemical phenomena based on sound mathematical models associated with simulation methods is presented for 3D micro-/nanofabrication. The results obtained from experimental investigation and characteristics of ion beam induced direct fabrication will be discussed.

Fabrication of interface-controlled Josephson Junctions by Ion beam damage

  • 김상협;김준호;성건용
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.168-171
    • /
    • 2002
  • We have demonstrated ramp-edge Josephson junctions using high temperature superconductors without depositing artificial barriers. We fabricated a surface barrier formed naturally during an ion beam etching process and the annealing under the oxygen atmosphere. The experimental results imply that the barrier natures such as the resistivity are varied by the annealing conditions and the ion milling conditions including the beam voltages. Thus, the ann eating and etching conditions should be optimized to obtain excellent junction properties. In optimizing the fabricating factors, the interface-controlled junctions showed resistively shunted junctions like current-voltage characteristics and an excellent uniformity. These junctions exhibited a spread ($1\sigma$) of $I_{c}$ is 10% fur chips containing 7 junctions at 50K.K.

  • PDF

Transmission Grating Formation in High Refractive-index Amorphous Thin Films Using Focused-Ion-Beam Lithography (접속이온빔 리소그라피를 이용한 고굴절 비정질 박막 투과 격자 형성)

  • Shin, Kyung;Kim, Jin-Woo;Park, Jeong-Il;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • In this study, we investigated the optical properties of sub-wavelength a-Si thin film transmission gratings, especially the polarization effect, the phase difference and the birefringence by using linearly polarized He-Ne laser beam (632.8nm). The a-Si transmission grating of the thickness $of < 0.1 \mum$ with four-type period($\Lambda = 0.4 \mum and 0.6 \mum$ for sub-wavelength and $\Lambda = 1.0 \mum and 1.4 \mum$ for above-wavelength) on quartz substrates have been fabricated using 50 KeV Ga+ Focused-Ion-Beam(FIB) Milling and $CF_4$Reactive-Ion-Etching(RIE) method. Finally, we obtained the trating array of a-Si thin film with a period $0.4 \mum, 0.6 \mum, 1.0 \mum, 1.4 \mum$ which have nearly equal finger spacing and width, sucessfully. Especially, for gratings with $\Lambda = 0.6 \mum(linewidth=0.25 \mum, linespace=0.35\mum), the \etamax at \theta_в=17.0^{\circ}$ is estimated to be 96%. As the results, we believe that the sub-wavelength grating arrayed a-Si thin film has the applicability as the optical device and components.

  • PDF

Heat treatment induced morphological changes of $Ca^{++}$ implanted single crystal $Al_2O_3$ ($Ca^{++}$를 implant한 단결정 $Al_2O_3$에서 열처리에 의한 형태학적 변화)

  • 김배연
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.327-333
    • /
    • 1999
  • Controlled Ca impurity implanted inner crack-like pore in the high purity alumina bi-crystal had been created by micro-fabrication technique, which includes ion implantation, photo-lithography, Ar ion milling, and hot press. The morphological change and the growth od crystals formed by heat treatment in Ca doped high purity single crystal alumina, were observed using optical microscopy. The dot was developed and hexagon like crystal appeared on inner surface of crack-like pore after heat treatment. Bar type crystals, probably CaO . $6Al_2O_3$, were observed on the inner surface of 100ppm Ca implanted specimen after 1 hour heat treatment at $1,500^{\circ}C$, but this bar type crystal disappeared after 1 hour heat treatment at $1,600^{\circ}C$. This disappearance means that there should be little increase of Ca solubility limit to alumina and/or changes of diffusion coefficient of Ca in alumina around this temperature.

  • PDF