• Title/Summary/Keyword: Ion-exchange technology

Search Result 560, Processing Time 0.027 seconds

EVALUATION OF FERROCYANIDE ANION EXCHANGE RESINS REGARDING THE UPTAKE OF Cs+ IONS AND THEIR REGENERATION

  • Won, Hui-Jun;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Won-Yang
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.489-496
    • /
    • 2008
  • Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake $Cs^+$ ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the $Cs^+$ ion of the surrogate soil decontamination solution, and resin-KCoFC showed the best $Cs^+$ ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the $Cs^+$ ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the $Fe^{2+}$ ion in the reduction step could also be reduced by adding the $K^+$ ion.

Degradation of Ion-exchange Soda-lime Glasses Due to a Thermal Treatment (이온강화 소다라임 유리의 열처리에 따른 강화 풀림현상)

  • Hwang, Jonghee;Lim, Tae-Young;Lee, Mi Jai;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.23-27
    • /
    • 2015
  • Recently, the use of ion-exchange strengthened glass has increased sharply, as it is now used as the cover glass for smart phone devices. Therefore, many researchers are focusing on methods that can be used to strengthen ion-exchange glass. However, research on how the improved strength can be maintained under thermal environment of device manufacturing is still insufficient. We tested the degradation of the characteristics of ion-exchange soda-lime glass samples, including their surface compressive stress characteristics, the depth of the ion-exchange layer (DOL), flexural strength, hardness, and modulus of rupture (MOR) values. Degradation of the characteristics of the ion-exchange glass samples occurred when they were heat-treated at a temperature that exceeded $350^{\circ}C$.

Research Trends in Ion Exchange Membrane Processes and Practical Applications (이온교환막 공정 및 응용 연구동향)

  • Kim, Deuk Ju;Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • In this review, we summarized some of membrane processes using the ion exchange membrane typically used in energy applications. Ion exchange membranes are classified according to their functions, formations (e.g. heterogeneous, homogeneous), and polymer type. Furthermore, various methods to prepare cation exchange membranes and anion exchange membranes were discussed in detail and also illustrated through a thorough review of the literature works. There are numerous reports highlighting recent research trends in the ion exchange membrane fabrication, however, in this review we will focus more on discussing the development made in ion exchange membranes and their potential usages in future technologies.

Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration

  • Kabsch-Korbutowicz, Malgorzata;Urbanowska, Agnieszka
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.211-219
    • /
    • 2012
  • To enhance the efficiency of water treatment and reduce the extent of membrane fouling, the membrane separation process is frequently preceded by other physico-chemical processes. One of them might be ion exchange. The aim of this work was to compare the efficiency of natural organic matter removal achieved with various anion-exchange resins, and to verify their potential use in water treatment prior to the ultrafiltration process involving a ceramic membrane. The use of ion exchange prior to ceramic membrane ultrafiltration enhanced final water quality. The most effective was MIEX, which removed significant amounts of the VHA, SHA and CHA fractions. Separation of uncharged fractions was poor with all the resins examined. Water pretreatment involving an ion-exchange resin failed to reduce membrane fouling, which was higher than that observed in unpretreated water. This finding is to be attributed to the uncharged NOM fractions and small resin particles that persisted in the water.

Synthesis and Characterization of Ion Exchange Particles for Application of Anion Exchange Membrane (음이온교환막 적용을 위한 이온교환입자의 합성 및 특성평가)

  • Dong Jun Lee;Kwang Seop Im;Ka Yeon Ryu;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.137-147
    • /
    • 2023
  • In this study, Br-PPO was developed by applying additive organic particles through a suspension polymerization synthesis method. The anion exchange membrane fuel cell system performance was evaluated using it to an anion exchange membrane. To improve the performance, organic ion exchange particles were prepared and added to the anion exchange membrane. Chemical structure analysis and synthesis were determined through FT-IR and NMR, and tensile strength and thermal stability were measured through TGA and UTM to determine whether it could be driven. Before the anion exchange membrane fuel cell test, the performance was evaluated by measuring the ion conductivity and ion exchange capacity. Finally, the Br-PPO-TMA-SDV (0.7%) anion exchange membrane with excellent ion conductivity and ion exchange capacity was introduced into the fuel cell system. Its performance was compared with FAA-3-50, a commercial membrane, to determine whether it could be introduced into a fuel cell system.

Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin (질산성질소에 파과된 이온교환수지의 생물학적 직접 재생)

  • Nam, Youn-Woo;Bae, Byung-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.

TRANSPORT CHARACTERISTICS OF $CO^{2+}$ THROUGH AN ION EXCHANGE TEXTILES IN A CONTINUOUS ELECTRODEIONIZATION (CEDI) SYSTEM UNDER ELECTRO-REGENERATION

  • Moon, Seung-Hyeon;Song, Jung-Hoon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.132-135
    • /
    • 2004
  • It has been known that transport characteristics of ions are very complicated in CEDI system due to the inter-relations between ion exchange media and solution. Thus, this study sought to determine the ionic mobility of cobalt ion through cation exchange textile under electroregeneration and consequently verify the transport mechanisms of cobalt ion in a CEDI system.(omitted)

  • PDF

The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems (고분자 이온교환막의 제조와 이온교환막을 이용한 에너지 공정)

  • Kim, Jae-Hun;Ryu, Seungbo;Moon, Seung-Hyeon
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.79-96
    • /
    • 2020
  • Secondary energy conversion systems have been briskly developed owing to environmental issue and problems of fossil fuel. They are basically operated based on electro-chemical systems. In addition, ion exchange membranes are one of the significant factors to determine performance in their systems. Therefore, the ion exchange membranes in suitable conditions must be developed to improve the performance for the electro-chemical systems. These ion exchange membranes can be classified into various types such as cation exchange membrane, anion exchange membrane and bipolar membrane. Their membranes have distinct characteristics according to the chemical, physical and morphological structure. In this review, the types of ion exchange membranes and their fabrication processes are described with main characteristics. Moreover, applications of ion exchange membranes in newly developed energy conversion systems such as reverse electrodialysis, redox flow battery and water electrolysis process are described including their roles and requirements.

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions

  • Tanaka, Yoshinobu;Uchino, Hazime;Murakami, Masayoshi
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.63-76
    • /
    • 2012
  • Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko;Jane P. Ferguson;William G. Cook
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3665-3676
    • /
    • 2023
  • The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.