• Title/Summary/Keyword: Ion-doping

Search Result 331, Processing Time 0.025 seconds

Synthesis of Li-doped NiO and its application of thermoelectric gas sensor (Li 도핑된 NiO 합성 및 열전식 수소센서에의 적용)

  • Han, Chi-Hwan;Han, Sang-Do;Kim, Byung-Kwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.136-141
    • /
    • 2005
  • Li-doped NiO was synthesized by molten salt method. $LiNO_3$-LiOH flux was used as a source for Li doping. $NiCl_2$ was added to the molten Li flux and then processed to make the Li-doped NiO material. Li:Ni ratios were maintained from 5:1 to 30:1 during the synthetic procedure and the Li doping amount of synthesized materials were found between 0.086-0.190 as a Li ion to Ni ion ratio. Li doping did not change the basic cubic structural characteristics of NiO as evidenced by XRD studies, however the lattice parameter decreased from 0.41769nm in pure NiO to 0.41271nm as Li doping amount increased. Hydrogen gas sensors were fabricated using these materials as thick films on alumina substrates. The half surface of each sensor was coated with the Pt catalyst. The sensor when exposed to the hydrogen gas blended in air, heated up the catalytic surface leaving rest half surface (without catalyst) cold. The thermoelectric voltage thus built up along the hot and cold surface of the Li-doped NiO made the basis for detecting hydrogen gas. The linearity of the voltage signal vs $H_2$ concentration was checked up to 4% of $H_2$ in air (as higher concentrations above 4.65% are explosive in air) using Li doped NiO of Li ion/Ni ion=0.111 as the sensor material. The response time T90 and the recovery time RT90 were less than 25 sec. There was minimum interference of other gases and hence $H_2$ gas can easily be detected.

Improving the dielectric reliability using boron doping on solution-processed aluminum oxide

  • Kim, Hyunwoo;Lee, Nayoung;Choi, Byoungdeog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.411.1-411.1
    • /
    • 2016
  • In this study, we examined the effects of boron doping on the dielectric reliability of solution processed aluminum oxide ($Al_2O_3$). When boron is doped in aluminum oxide, the hysteresis reliability is improved from 0.5 to 0.4 V in comparison with the undoped aluminum oxide. And the accumulation capacitance is increased when boron was doped, which implying the reduction of the thickness of dielectric film. The improved dielectric reliability of boron-doped aluminum oxide is originated from the small ionic radius of boron ion and the stronger bonding strength between boron and oxygen ions than that of between aluminum and oxygen ions. Strong boron-oxygen ion bonding in aluminum oxide results dielectric film denser and thinner. The leakage current of aluminum oxide also reduced when boron was doped in aluminum oxide.

  • PDF

Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries

  • Hong, Sukhyun;Jo, Hyuntak;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.116-120
    • /
    • 2015
  • Lithium diffusivity of fluorine-free and -doped tin-nickel (Sn-Ni) film model electrodes with improved interfacial (solid electrolyte interphase (SEI)) stability has been determined, utilizing variable rate cyclic voltammetry (CV). The method for interfacial stabilization comprises fluorine-doping on the electrode together with the use of electrolyte including fluorinated ethylene carbonate (FEC) solvent and trimethyl phosphite additive. It is found that lithium diffusivity of Sn is largely dependent on the fluorine-doping on the Sn-Ni electrode and interfacial stability. Lithium diffusivity of fluorine-doped electrode is one order higher than that of fluorine-free electrode, which is ascribed to the enhanced electrical conductivity and interfacial stabilization effect.

Doping-level dependent dry-etch damage of in n-type GaN (n형 GaN의 doping 농도에 따르는 건식 식각 손상)

  • Lee, Ji-Myon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.417-420
    • /
    • 2004
  • The electrical effects of dry-etch on n-type GaN by an inductively coupled $Cl_2/CH_4/H_2/Ar$ plasma were investigated as a function of ion energy, by means of ohmic and Schottky metallization method. The specific contact resistivity(${\rho}_c$) of ohmic contact was decreased, while the leakage current in Schottky diode was increased with increasing ion energy due to the preferential sputtering of nitrogen. At a higher rf power, an additional effect of damage was found on the etched sample, which was sensitive to the dopant concentration in terms of the ${\rho}_c$ of ohmic contact. This was attributed to the effects such as the formation of deep acceptor as well as the electron-enriched surface layer within the depletion layer. Furthermore, thermal annealing process enhanced the ohmic and Schottky property of heavily damaged surface.

  • PDF

Arsenic implantation graph comparing with Dopant diffusion simulation and 1-D doping simulation (performed by synopsys sentaurus process)

  • Im, Ju-Won;Park, Jun-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.344-346
    • /
    • 2016
  • 본 논문에서는 3-stream model에 기반한 Dopant diffusion simulator를 사용하여 실리콘 기판 내부의 As이온의 확산을 시뮬레이션한 결과와 Dual-Pearson Analytic model에 기반하여 Ion implantation을 1-D doping simulation한 결과를 토대로 여러 공정 설계에서 diffusion simulator의 사용가능함을 확인하였다.

  • PDF

Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation

  • Gao, Xinghua;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.329-335
    • /
    • 2015
  • The effects of ion-doping on $TiO_2$ nanotubes were investigated to obtain the optimal catalyst for the effective decomposition of Rhodamine B (RB) through UV photocatalytic oxidation process. Changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the BET surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on RB removal increased when $Ag^+$, $Al^{3+}$ and $Zn^{2+}$ were doped into the $TiO_2$ nanotubes, whereas such activities decreased as a result of $Mn^{2+}$ or $Ni^{2+}$ doping. In the presence of $Zn^{2+}$-doped $TiO_2$ nanotubes calcined at $550^{\circ}C$, the removal efficiency of RB within 50 min was 98.7%.

Analysis of Current Characteristics Determined by Doping Profiles in 3-Dimensional Devices (3차원 구조 소자에서의 doping profile에 따른 전류 특성 분석)

  • Cho, Seong-Jae;Yun, Jang-Gn;Park, Il-Han;Lee, Jung-Hoon;Kim, Doo-Hyun;Lee, Gil-Seong;Lee, Jong-Duk;Park, Byung-Gook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.475-476
    • /
    • 2006
  • Recently, the demand for high density MOSFET arrays are increasing. In implementing 3-D devices to this end, it is inevitable to ion-implant vertically in order to avoid screening effects caused by high silicon fins. In this study, the dependency of drain current characteristics on doping profiles is investigated by 3-D numerical analysis. The position of concentration peak (PCP) and the doping gradient are varied to look into the effects on primary current characteristics. Through these analyses, criteria of ion-implantation for 3-D devices are established.

  • PDF

Novel Alignment Layers for Ion Beam Method and the Orientations of Liquid Crystal

  • Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo;Park, Chang-Joon;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1155-1158
    • /
    • 2004
  • Various inorganic alignment layers of nematic liquid crystal (NLC) molecules were investigated. Ar ion beam (IB) irradiation was utilized for alignment method and homogenous and homeotropic orientations with tilt angle were obtained on the suitable inorganic thin films. Proper doping materials were added to diamond-like carbon (DLC) films. In the case of homogeneous alignment, nitrogen doping affected the increase of pretilt angle, while the fluorine bonding in the DLC films was induced the tilted homeotropic alignment cause its extreme hydrophobic property. These results showed that ion beam irradiation method could be applied to the various alignment mode of NLC such as IPS, TN and MVA.

  • PDF

Pt-and $TiO_2-doped\; Nb_2O_5$ Thin Film by Ion-Beam-Enhanced Deposition

  • Zhu, Jianzhong;Ren, Congxin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.100-105
    • /
    • 1998
  • This paper describes the preparation of Pt-and $TiO_2$-doped $Nb_2O_5$ thin film by Ion-Beam-Enhanced Deposition. Platinum and titanium doping, and Nb2O5 deposition were carried out in situ. The dependence of oxygen sensing properties on the amounts of Pt and Ti dopant in the $Nb_2O_5$ film was investigated. There were the highist sensitivity, the lowest temperature coefficient and the shortest responce time at doping of 5 mol% $TiO_2$ and 0.3 mol%Pt

  • PDF

The discharge characteristic of Li ion doped MgO film in a flat fluorescent lamp structure

  • Ryu, Si-Hong;Lee, Seong-Eui;Ahn, Sung-Il;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1388-1390
    • /
    • 2007
  • This paper investigates how various concentrations of lithium ion influence on crystallization of MgO in thin films formed by spin coating and an the discharge characteristic in a flat fluorescent lamp structure. The XRD results indicate $Li^+$ ion enhances the growth of MgO crystal in a spin coated thin film. The discharge property with the $Li^+$ ion doped MgO films show the lithium ion in MgO film clearly reduce the initial discharge voltages of test devices. Interestingly, the test panels with various doped MgO film have somewhat higher static memory margin of than that of pure-MgO owing probably to the pore structure of spin coated MgO films. The CL spectra, which confirm that the doping creates defects energy levels in the band gap of MgO, show the $F^+$ center is the main defects in doped MgO films.

  • PDF