We investigated the effect of Ar ion sputtering on the surface electronic structure of indium tin oxide (ITO) using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements with increasing Ar ion sputtering time. XPS measurements revealed that surface contamination on ITO was rapidly removed by Ar ion sputtering for 10 s. UPS measurements showed that the work function of ITO increased by 0.2 eV after Ar ion sputtering for 10 s. This increase in work function was attributed to the removal of surface contamination, which formed a positive interface dipole relative to the ITO substrate. However, further Ar ion sputtering did not change the work function of ITO although the surface stoichiometry of ITO did change. Therefore, removing the surface contamination is critical for increasing the work function of ITO, and Ar ion sputtering for a short time (about 10 s) can efficiently remove surface contamination.
Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.
The sputtering yield change of an amorphous Si layer on Si(100) was measured quantitatively for 0.5 keV $O_2^{+}$ and $Ar^{+}$ ion bombardment with in suit MEIS. In the case of 0.5 keV $O_2^{+}$ ion bombardment, at the initial stage of sputtering before surface oxidation, the sputtering yield of Si was 1.4 (Si atoms/$O_2^{+}$) and then decreased down to 0.06 at the ion dose of $3\times10^{16}O_2\;^{+}\textrm{/cm}^2$. In the case of 0.5 keV $Ar^{+}$ ion bombardment, the sputtering yield of Si for the surface normal incidence was 0.56 at the ion dose of 2.5 ${\times}$ 10$^{15}$$Ar^{+}\textrm{cm}^2$, and rapidly saturated to 1.2 at dose of $7.5\times10^{15}Ar^+\textrm{cm}^2$. For the incidence angle of 80 from surface normal, the sputtering yield of Si was saturated to about 1.4 at the initial stage of sputtering. The surface transient effects, caused by change in sputtering yield at the initial stage of sputtering can be negligible when 0.5 keV $Ar^{+}$ ion at extremely grazing angle was used for sputter depth profiling.g.
I Ion beam technology has recently attracted much interest because it has exciting t technological p아:ential for surface analysis, ion beam mixing, surface cleaning and etching i in thin film growth and semiconductor fabrication processes, etc. Es야~cially, ion beam s sputtering has been widely used for sputter depth profiling with x-photoelectron S spectroscopy (XPS) , Auger electron s$\pi$~troscopy(AES), and secondary-ion mass S야i따oscopy(SIMS). However, The problem of surface compositional ch없1ge due to ion b bombardment remains to be understo여 없ld solved. So far sputtering processes have been s studied by s따face an외ysis tools such as XPS, AES, and SIMS which use the sputtering p process again. It would be improbable to measure the modified surface composition profiles a accurately due to ion beam bombardment with surface analysis techniques based on sputter d depth profiling. However, recently Medium energy ion scattering spectroscopy(MEIS) has b been applied to study the sputtering of solid surface at ion bombardment and has been p proved that it has been extremely valuable in probing the surface composition 뻐d s structure nondestructively and quantita디vely with less than 1.0 nm depth resolution. To u understand the sputtering processes of solid surface at ion bombardment, The Molecular D Dynamics(MD) and Monte Carlo(MC) simulation has been used and give an intimate i insight into the sputtering processes of solid surfaces. In this presentation, the sputtering processes of alloys and compound samples at ion b bombardment will be reviewed and the MEIS results for the Ar+ sputter induced altered l layer of the TazOs thin film 뻐dd없nage profiling of Ar+ ion sputt얹"ed Si(100) surface will b be discussed with the results of MD and MC simulation.tion.
Linear ion beams have been introduced for the ion beam treatments of flexible substrates in roll-to-roll web coating systems. Anode layer linear ion sources (300 mm width) were used to make the linear ion beams. Oxygen ion beams having an ion energy from 200 eV to 800 eV used for the adhesion improvement of Cu thin films on PET substrates. The Cu thin films deposited by a conventional magnetron sputtering on the oxygen ion beam treated PET substrates showed Class 5 adhesion defined by ASTM D3359-97 (tape test). Argon ion beams with 1~3 keV used for the ion beam sputtering deposition process, which aims to control the initial layer before the magnetron sputtering deposition. When the discharge power of the linear ion source is 1.2 kW, static deposition rate of Cu and Ni were 7.4 and $3.5{\AA}/sec$, respectively.
In this paper, to produce sheet plasma with high density for ion plating, we designed magnetic circuit of ion plating device consisting of solenoid coil and rectangular permanent magnet. And, we analyzed the effects of the magnetic field distribution using FEM (Finite Element Methode). Additionally, we made a sputtering system including ion plating technique on the basis of the design and verified the possibility of the sheet plasma application for advanced sputter system.
시료에 주입된 이온의 깊이방향에 따른 농도분포를 알아보기 위하여 시료표면을 sputtering 하면서 튀어나온 주입된 이온을 depth profiling한다. Depth profiling 측정 시에 깊이방향에 영향을 주는 sputtering rate가 변화하는 효과를 SRIM simulation을 이용하여 계산하였다. 시료에 이온이 주입하게 되면 시료의 원자밀도는 약간 증가하게 되는데, 그 결과로 sputtering yield가 변화하게 된다. 이러한 변화가 결과적으로 depth profile 측정시에 깊이방향에 영향을 줄 수 있는 sputtering rate를 변화시키는 원인이 된다. SRIM(Stopping and Range of Ions in Matter) Monte Carlo simulation code를 사용하여 이온주입에 의한 시료의 원자밀도의 변화에 따른 sputtering yield를 구하여 sputtering rate를 계산하고, 그 차이가 depth profiling 측정에서 깊이방향 분포에 영향을 줄 수 있다는 것을 확인하였다.
The LTCC (Low Temperature Co-fired Ceramic) technology meets the requirements for high quality microelectronic devices and microsystems application due to a very good electrical and mechanical properties, high reliability and stability as well as possibility of making integrated three dimensional microstructures. The wet process, which has been applied to the etching of the metallic thin film on the ceramic substrate, has multi process steps such as lithography and development and uses very toxic chemicals arising the environmental problems. The other side, Plasma technology like ion beam sputtering is clean process including surface cleaning and treatment, sputtering and etching of semiconductor devices, and environmental cleanup. In this study, metallic multilayer pattern was fabricated by the ion beam etching of Ti/Pd/Cu without the lithography. In the experiment, Alumina and LTCC were used as the substrate and Ti/Pd/Cu metallic multilayer was deposited by the DC-magnetron sputtering system. After the formation of Cu/Ni/Au multilayer pattern made by the photolithography and electroplating process, the Ti/Pd/Cu multilayer was dry-etched by using the low energy-high current ion-beam etching process. Because the electroplated Au layer was the masking barrier of the etching of Ti/Pd/Cu multilayer, the additional lithography was not necessary for the etching process. Xenon ion beam which having the high sputtering yield was irradiated and was used with various ion energy and current. The metallic pattern after the etching was optically examined and analyzed. The rate and phenomenon of the etching on each metallic layer were investigated with the diverse process condition such as ion-beam acceleration energy, current density, and etching time.
Ion beam processing is one of the key technologies to realize mastless and resistless sub 50nm nano fabrication. Unwanted effects, however, may occur since an energetic ion can interact with a target surface in various ways. Depending on the ion energy, the interaction can be swelling, deposition, sputtering, re-deposition, implantation, damage, backscattering and nuclear reaction. Sputtering is the fundamental mechanisms in ion beam induced direct patterning. Re-deposition and backscattering are unwanted mechanisms to avoid. Therefore understanding of ion beam-solid interaction should be advanced for further ion beam related research. In this paper we simulate some important interaction mechanisms between energetic incident ions and solid surfaces and the results are compared with experimental data. The simulation results are agreed well with experimental data.
A sputtering-assisted magnetic field system was successfully developed for depositing crystalline Cu thin films at room temperature. This system employs a plasma source and an ion-beam gun with two magnetic field generators, which is covered with sputtering target and the ion-beam gun, simultaneously serving as sputtering plasma and a magnetic field generator. The formation of crystalline Cu thin films at room temperature was dominated by magnetic fields, which was revealed by preliminary experiments. This system can be employed for producing crystalline metal thin films at room temperature.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.