• Title/Summary/Keyword: Ion selective electrodes

Search Result 102, Processing Time 0.033 seconds

Optimal Immobilization of Penicillinase for Ion-selective Electrode

  • Hur, Moon-Hye;Kang, Hee-Jin;Min, Hye-Young;Lee, Ji-Yeun;Lee, Ki-Hyun;Ahn, Moon-Kyu
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.68-71
    • /
    • 1997
  • Penicillin sensor was prepared by immobilizing penicillinase (Pcase) on $H^{+}$-selective carboxylated poly (vinyl chloride) (PVC-COOH) membrane or cellulose filter membrane. The immobilization techniques are as follows. Pcase was immobilized with GTH on $H^{+}$-selective PVC-COOH membrane or some amount of BSA was dropped on that membrane. Another method to make immobilization is to mix type I Pcase with GTH and drop on a cellulose filter membrane. According to immobilization techniques, there were some differences in response properties of enzyme electrodes, however, all electrodes responded to Pcase-resistant penicillin derivatives. Pcase immobilized on cellulose filter membrane with $H^{+}$-selective PVC membrane eletrode was more stable and more sensitive to penicillinase-resistant penicillin derivatives than any other immobilization techniques.

  • PDF

Polymeric Acetate-Selective Electrodes Based on meso-(α,α,α,α)-Tetrakis-[(2-arylphenylurea)phenyl]porphyrins: Electormic and pH Effects

  • Lee, Hyo-Kyoung;Song, Ki-ju;Seo, Hyung-Ran;Jeon, Seung-won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1409-1412
    • /
    • 2002
  • Polymeric membrane electrodes for acetate anion based on meso-(${\alpha}$,${\alpha}$,${\alpha}$,${\alpha}$)-5,10,15,20-tetrakis[2-(penta-fluorophenylurea) phenyl]porphyrin I and similar urea-functionalized porphyrins Ⅱ-Ⅳ as neutral ionophores were prepared. The membrane based on porphyrin I exhibits the best potentiometric properties in pH 6.0 rather than pH 7.0: linear stable response over a wide concentration range (6.0 ${\times}$$10^{-5}$-1.0 ${\times}$$10^{-2}$) with a slope of -59.6 mV/decade and a detection limit of log[CH3CO$O^-$] = -5.32. Selectivity coefficients obtained from the matched potential method (MPM) in pH 6.0 indicate that interferences of hydrophobic anions are very small for the membranes of porphyrins I and II having the strong withdrawing group. The electronic effect of urea-functionalized porphyrins and pH effect of buffer solutions are discussed on the potentiometric response.

Tallium(I) Ion-Selective Electrodes Based on Crown Ethers (크라온에테르를 이용한 탈륨(I) 이온 선택성 전극)

  • Sung Min Kim;Sung Uk Jung;Jineun Kim;Jae Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.773-778
    • /
    • 1993
  • Poly(vinyl chloride)(PVC) membrane electrodes based on the lipophilic neutral carrier, dibenzo-18-crown-6(DB18C6) and benzo-15-crown-5 (B15C5) as the active sensors for Tl$^+$ ion have been prepared and tested in different content of the potassium tetrakis(4-chlorophenyl)borate (KTClPB) as lipophilic salt. Dioctyl adipate (DOA), 2-nitrophenyl phenyl ether (NPPE) and o-nitrophenyl actyl ether (NPOE) were used as plasticizing solvent mediators. Electrodes exhibited good linear responses of 40∼55 mV decade$^{-1}$ for Tl$^+$ ion within the concentration ranges 10$^{-1}$∼10$^{-5}$M TlNO$_3$. Selectivity coefficients of interfering ions (alkali metal, alkaline earth metal and some transition metal ions) for Tl$^+$-ISE were determined by separate solution method and were sufficiently small for most of them. These crown ether type ion-selective electrodes are suitable for use with aqueous solution at pH > 3.

  • PDF

Determination of Acidic Drug with ISEs Using Ternary Complex of Metal-di-2-pyridyl Ketone Oxime-acidic Drug as Ion-Exchanger (이온교환체로서 금속-디-2-피리딜케톤옥심-산성의약품 3원 착물을 이용한 산성의약품의 정량)

  • 안문규;오원정;이언경;이순영;이재윤;정문모;허문회
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.320-323
    • /
    • 2002
  • A method for the determination of acidic drug, mefenamic acid and ibuprofen with ion-selective electrode(ISE) using Fe(II)-di-2-pyridyl ketone oxime complex as a counter ion were developed. Benzyl-2-nitrophenyl ether(BNPE) plasticized membrane was more selective and sensitive than the other tested membranes. The acidic drug selective electrode exhibits a linear response for 10$^{-2}$ M 510$^{-5}$ M of acidic drugs, mefenamic acid and ibuprofen with a slope of -55.9 and -56.3 mV/dec. in borate buffer solution (pH 8.9). Potentiometric selectivity measurements revealed negligible interferences from aromatic and aliphatic carboxylic acid salts. The electrodes were found to be useful for the direct determination of mefenamic acid and ibuprofen in pharmaceutical preparations.

An Automated Water Nitrate Monitoring System based on Ion-Selective Electrodes

  • Cho, Woo Jae;Kim, Dong-Wook;Jung, Dae Hyun;Cho, Sang Sun;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • Purpose: In-situ water quality monitoring based on ion-selective electrodes (ISEs) is a promising technique because ISEs can be used directly in the medium to be tested, have a compact size, and are inexpensive. However, signal drift can be a major concern with on-line management systems because continuous immersion of the ISEs in water causes electrode degradation, affecting the stability, repeatability, and selectivity over time. In this study, a computer-based nitrate monitoring system including automatic electrode rinsing and calibration was developed to measure the nitrate concentration in water samples in real-time. Methods: The capabilities of two different types of poly(vinyl chloride) membrane-based ISEs, an electrode with a liquid filling and a carbon paste-based solid state electrode, were used in the monitoring system and evaluated on their sensitivities, selectivities, and durabilities. A feasibility test for the continuous detection of nitrate ions in water using the developed system was conducted using water samples obtained from various water sources. Results: Both prepared ISEs were capable of detecting low concentrations of nitrate in solution, i.e., 0.7 mg/L $NO_3-N$. Furthermore, the electrodes have the same order of selectivity for nitrate: $NO_3{^-}{\gg}HCO_3{^-}$ > $Cl^-$ > $H_2PO_4{^-}$ > $SO{_4}^{2-}$, and maintain their sensitivity by > 40 mV/decade over a period of 90 days. Conclusions: The use of an automated ISE-based nitrate measurement system that includes automatic electrode rinsing and two-point normalization proved to be feasible in measuring $NO_3-N$ in water samples obtained from different water sources. A one-to-one relationship between the levels of $NO_3-N$ measured with the ISEs and standard analytical instruments was obtained.

Tetrahydrofuran-Containing Crown Ethers as Ionophores for NH+4-Selective Electrodes

  • Jin, Hua-Yan;Kim, Tae-Ho;Kim, Jin-Eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • The ammonium ion-selective electrodes ($NH^+_4$-ISEs) based on the tetrahydrofuran(THF)-containing-16-crown-4 derivatives,1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^1$) and 5,10,15,20,-tetramethyl-1,4,6,9,11,14,16,19-tetraoxocycloeicosane ($L^2$), were prepared and the electrode characteristics were tested. The conditioned $NH_4^+$-ISEs (E1) based on $L^1$ with TEHP as a plasticising solvent mediator gave best results with near-Nernstian slope of 53.9 mV/decade of activity, detection limit of $10^{-4.9}$ M, and enhanced selectivity coefficients for the $NH^+_4$ ion with respect to an interfering $K^+$ ion (log $K^{pot}_{NH_4^+,K^+}$ = -1.84). This result was compared to other ammonium ionophores reported previously, for example, that of nonactin (log $K^{pot}_{NH_4^+,K^+}$ = -0.92). The proposed electrode showed no significant potential changes in the range of 3.0 < pH < 9.0.

Fabrication and Electrochemical Characterization of Ion-selective Composite Carbon Electrode Coated with Sulfonated Poly(Ether Ether Ketone) (Sulfonated Poly(Ether Ether Ketone)을 코팅한 이온선택성 복합탄소전극의 제조 및 전기화학적 특성 분석)

  • Choi, Jae-Hwan;Park, Chan-Mi
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2013
  • Sulfonated poly(ether ether ketone) (SPEEK) with a certain degree of sulfonation were synthesized by reacting PEEK and sulfuric acid at different reaction time. Then ion-selective composite carbon electrodes (ISCCE) were fabricated by coating the prepared SPEEK on the surface of carbon electrodes. The specific capacitance and resistance of the ISCCE were analyzed by electrical impedance spectroscopy. The ion exchange capacities (IEC) of the SPEEKs were measured in the range of 1.60~2.57 meq/g depending on the sulfonation time. The SPEEK more than 2.5 meq/g of IEC was considered unsuitable for fabricating the ISCCE because it was dissolved in water. The specific capacitance of the prepared ISCCE increased with increasing the IEC of coated SPEEKs and the capacitance was improved up to about 20% compared to that of uncoated carbon electrode. In addition, the electrical resistance of coating layer decreased significantly with increasing the IEC of coated SPEEKs. It is expected that the desalination efficiency of conventional capacitive deionization process can be improved by using the prepared ISCCE coated with SPEEK.

Polymeric Membrane Silver-ion Selective Electrodes Based on Schiff Base N,N'-Bis(pyridin-2-ylmethylene)benzene-1,2-diamine

  • Seo, Hyung-Ran;Jeong, Eun-Seon;Ahmed, Mohammad Shamsuddin;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1699-1703
    • /
    • 2010
  • The Schiff base N,N'-bis(pyridin-2-ylmethylene)benzene-1,2-diamine [BPBD] has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the silver ($Ag^+$) ion. Potentiometric investigations indicate high affinity of this receptor for silver ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, o-NPOE: 66 mg and additive were added 50 mol % relative to the ionophore in 1 mL THF. The sensor works well over a wide concentration range $1{\times}10^{-3}$ to $1.0{\times}10^{-7}$ M by pH 6 at room temperature (slope 58.6 mV/dec.) with a response time of 10 seconds and showed good selectivity to silver ion over a number of cations. It could be used successfully for the determination of silver ion content in environmental and waste water samples.

Potentiometric Characteristics of Nitroso.R-Salt-Metal Complex Based Basic Drug Selective Electrodes (금속 니트로소 R염 착물을 이용한 염기성 의약품 선택성 전극의 특성)

  • 이미나;안문규
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.356-360
    • /
    • 2003
  • Nitroso-2-naphthol-3,6-disulfonic acid, disodium salt (NRS) was used as an organic ligand to prepare basic drug-selective polymeric membrane electrode. The sensing membrane of the electrode consited of basic drug-meta1(II)-NRS as an ion-exchanger site in a poly(vinyl chloride) matrix plasticized with 2-nitrophenyl octyl ether (NPOE). The metal ions used were Fe$^{2+}$, Co$^{2+}$, Ni$^{2+}$ and Cu$^{2+}$. The electrodes exhibited fast and wide linear response in the basic drug concentration of 10$^{-5}$ ∼10$^{-3}$ mol/l with a response slope of 50∼60 mV/decade in a buffer solution of pH 4∼8. The electrodes exhibited good selectivity for many basic compounds.mpounds.