• Title/Summary/Keyword: Ion mixing

Search Result 394, Processing Time 0.03 seconds

Interface Characteristics of Ion Beam Mixed Cu/polyimide system

  • G.S.Chang;Jung, S.M.;Lee, Y.S.;Park, I.S.;Kang, H.J.;J.J.Woo;C.N.Whang
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.1-7
    • /
    • 1995
  • Cu(400$\AA$)/Polyimide has been mixed with 80 keV Ar+ and N2+from 1.0X1015ions/$\textrm{cm}^2$ to 2.0X1016 ions/$\textrm{cm}^2$. The changes of chemical bond and internal properties of sample are investigated by X-ray photoelectron spectroscopy(XPS). The quantitative adhesion strength is measured by using scratch test. The optimized mixing condition is that Cu/PI is irradiated with 80 keV N2+ at a dose of 1.0X1015 ions/$\textrm{cm}^2$, because N2+ ions can product more pyridine-like moiety, amide group, and tertiary amine moiety which are known as adesion promoters than Ar+.

  • PDF

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Temperature-Dependent Mn Substitution Effect on LiNiO2

  • Seungjae Jeon;Sk. Khaja Hussain;Jin Ho Bang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.161-167
    • /
    • 2024
  • Despite the important role of manganese (Mn) in cobalt-free, Ni-rich cathode materials, existing reports on the effects of Mn as a substitute for cobalt are not consistent. In this work, we analyzed the performance of cathodes comprised of Li(Ni1-xMnx)O2 (LNMO). Both beneficial and detrimental results occurred as a result of the Mn substitution. We found that a complex interplay of effects (Li/Ni mixing driven by magnetic frustration, grain growth suppression, and retarded lithium insertion/extraction kinetics) influenced the performance and was intimately related to calcination temperature. This indicates the importance of establishing an optimal reaction temperature for the development of high-performance LNMO.

Synthesis of Silica Microspheres Containing Iron Oxide Nanoparticles for Removal of Organic Pollutant by Adsorption and Photocatalytic Decomposition

  • Young-Sang Cho;Sohyeon Sung
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.771-776
    • /
    • 2021
  • Iron oxide nanoparticles were incorporated to form composite microspheres of SiO2 and Fe2O3 for magnetic separation of the particles after adsorption or photochemical decomposition. Economic material, sodium silicate, was purified by ion exchange to prepare aqueous silicic acid solution, followed by mixing with iron oxide nanoparticles. Resulting aqueous dispersion was emulsified, and composite microspheres of SiO2 and Fe2O3 was formed from the emulsion droplets as micro-reactors during heating. Removal of methylene blue using the composite microspheres was performed by batch adsorption process. Synthesis of composite microspheres of silica containing Fe2O3 and TiO2 nanoparticles was also possible, the particles could be separated using magnets efficiently after removal of organic dye.

A Study on the etching mechanism of $CeO_2$ thin film by high density plasma (고밀도 플라즈마에 의한 $CeO_2$ 박막의 식각 메커니즘 연구)

  • Oh, Chang-Seok;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.8-13
    • /
    • 2001
  • Cerium oxide ($CeO_2$) thin film has been proposed as a buffer layer between the ferroelectric thin film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS) structures for ferroelectric random access memory (FRAM) applications. In this study, $CeO_2$ thin films were etched with $Cl_2$/Ar gas mixture in an inductively coupled plasma (ICP). Etch properties were measured for different gas mixing ratio of $Cl_2$($Cl_2$+Ar) while the other process conditions were fixed at RF power (600 W), dc bias voltage (-200 V), and chamber pressure (15 mTorr). The highest etch rate of $CeO_2$ thin film was 230 ${\AA}$/min and the selectivity of $CeO_2$ to $YMnO_3$ was 1.83 at $Cl_2$($Cl_2$+Ar gas mixing ratio of 0.2. The surface reaction of the etched $CeO_2$ thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. There is a Ce-Cl bonding by chemical reaction between Ce and Cl. The results of secondary ion mass spectrometer (SIMS) analysis were compared with the results of XPS analysis and the Ce-Cl bonding was monitored at 176.15 (a.m.u). These results confirm that Ce atoms of $CeO_2$ thin films react with chlorine and a compound such as CeCl remains on the surface of etched $CeO_2$ thin films. These products can be removed by Ar ion bombardment.

  • PDF

A Thermodynamical Study on the Phase Formation and Sequence by Ion Beam Mixing in Al/Pd System (이온선 혼합에 의한 Al/Pd계의 상형성 및 전이에 관한 열역학적 연구)

  • Choi, Jeong-Dong;Hong, Jin-Seok;Kwak, Joon-Seop;Chi, Eung-Joon;Park, Sang-Wook;Baik, Hong-Koo;Chae, Keun-Hwa;Jung, Sung-Mun;Whang, Chung-Nam
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.209-219
    • /
    • 1993
  • Evaporated Al/Pd thin films were irradiated with various doses to produce intermetallic compounds. In order to study the first phase formation and phase sequence, RBS and TEM studies have been used. It was found that the initial phase formed by irradiation of $5{\times}10^{15}Ar^+/cm^2$ was $Al_3Pd_2$, while $1.5{\times}10^{16}Ar^+/cm^2$ gave the subsequent phase of AlPd. This phenomenon was analysed using effective heat of formation (${\Delta}$H') model. The experimental results agree with that predicted by effective heat of formation model. This model has been extended to predict the first phase formation and phase sequence by ion beam mixing in metal/Si systems as well as metal-metal systems.

  • PDF

Durability and Bioassay of a Sulfur Polymer Surface Protecting Agent for Concrete Structures (콘크리트 구조물용 유황폴리머 표면보호재의 내구성능 및 생물독성)

  • Seok, Byoung-Yoon;Lee, Byung-Jae;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.29-36
    • /
    • 2015
  • In this study, to examine the use of sulfur polymer as a coating agent for concrete, durability and hazard evaluations were performed. The result of the evaluation indicated that the chemical resistance of the coating agent for concrete was outstanding against acidic, base, and alkaline solutions. The evaluation of the bond strength after an accelerated weathering test depending on the mixing condition indicated that the most outstanding strength characteristic was obtained when silica powder and fly ash were mixed at the same time. The bond strength exceeded 1 MPa in every mixing condition even after the repeated hot and cold treatment of the coating agent specimen for concrete, and the SFS mix proportion showed the highest bond strength. The examination of the accelerated carbonation and chloride ion penetration resistance of the concrete coated with the coating agent indicated that the specimen coated with the coating agent using silica powder as a filler showed the most outstanding durability. When a fish toxicity test was performed to examine the hazard of the use of the functional polymer as a coating agent for concrete, the functional polymer was found to have no effect on the organisms. When the chemical resistance, freezing and thawing resistance, carbonation, and chloride ion penetration resistance of the coating agent were considered, substituting silica powder and fly ash as the fillers of the functional polymer by 20%, respectively, was the optimal level in the range of this study.

Performance Evaluation of Chloride and Sulfate Removal using Anion Exchange Resin in Saturated Ca(OH)2 Solutions (음이온 교환수지를 이용한 포화 수산화칼슘 수용액 내 염소이온 및 황산이온 제거 특성 평가)

  • Lee, Yun-Su;Chen, Zheng-Xin;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.146-154
    • /
    • 2017
  • Recently, self-healing concrete has been researched as maintenance and repair of concrete structures are important challenges we face. This paper focused on possibility of ion exchange resin as a novelty material directly and actively controlling harmful ions of concrete, whereas most self-healing concrete researches have been focused on methods to automatically filling and repairing internal crack of concrete. Because equilibrium properties between ion exchange resin and harmful ion is important before design of cement mixing proportion, it was conducted to remove chloride or sulfate in saturated $Ca(OH)_2$ solutions containing NaCl or $Na_2SO_4$. The removal performance was analyzed using kinetic equation and isothermal equation. Consequently, the removal properties of anion exchange resin were relatively more dependent on pseudo second reaction equation and Langmuir equation than pseudo first reaction equation and Freundlich equation. And it was concluded that each chloride and sulfate can be removed to the maximum 1068 ppm and 1314 ppm.

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part II : Performance Study of Membrane Capacitive Deionization Process (폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식 탈염공정의 탈염성능 Part II : 불균질 이온교환막의 탈염성능)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.240-247
    • /
    • 2017
  • In this study, the heterogeneous ion exchange membranes prepared by the combination of the carbon electrode and mixed the cation and anion exchange polymers and polyvinylidene fluoride as the basic polymer together were made to recognize the efficiency of the salt removal for the application of the membrane capacitive deionization process. The mixing weight ratio of the solvent, basic polymer and ion exchange resin was 7 : 2 : 1 and this mixed solution was directly cast on the electrode. As for the operating conditions of the adsorption voltage and time, feed flow rate, desorption voltage and time of the feed solution NaCl 100 mg/L, the salt removal efficiencies (SRE) were measured. Apart from this NaCl, the $CaCl_2$ and $MgSO_4$ solutions were investigated in terms of SRE as well. Typically, SRE for NaCl 100 mg/L solution under the conditions of adsorption voltage/time, 1.5 V/3 min, desorption voltage/time -0.1 V/3 min, was shown 98%. And for the $CaCl_2$ and $MgSO_4$ solutions, the SREs of 70 and 59% were measured under the conditions of adsorption voltage/time, 1.2 V/3 min, desorption voltage/time -0.5 V/5 min, respectively.

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals (중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響))

  • Jung, Kyungbae;Park, Hongki;Yoo, Kyoungkeun;Park, Jay Hyun;Choi, Ui Kyu
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2013
  • The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.