• Title/Summary/Keyword: Ion irradiation

Search Result 456, Processing Time 0.03 seconds

Room Temperature Luminescence from ion Beam or Atmospheric Pressure Plasma Treated SrTiO3

  • Song, Jin-Ho;Seok, Jae-Gwon;Yeo, Chang-Su;Lee, Gwan-Ho;Song, Jong-Han;Sin, Sang-Won;Choe, Jin-Mun;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.530-531
    • /
    • 2013
  • 3 MeV protonirradiated SrTiO3 (STO) single crystal exhibits a blue and green mixed luminescence. However, the same proton irradiated STO deposited with very thin Pt layer does not show any luminescence. This Pt layer involved in preventing the damage caused by arcingthat comes from tens of kV surface voltage build-up due to secondary electron induced charge up at the surface of insulator during ion beam irradiation. It implies that luminescence of ion irradiated STO originated from the modified STO surface layer caused by arcing rather than direct ion beam irradiation effect. Atmospheric pressure plasma, a simple and cost-effective method, treated STO also exhibits the same kind of blue and green mixed luminescence as the ion beam treated STO, because this plasma also creates a surface damage layer by arcing.

  • PDF

Room-Temperature Luminescence from Ion Beam or Atmospheric Pressure Plasma-Treated SrTiO3

  • Song, J.H.;Choi, J.M.;Cho, M.H.;Choi, E.J.;Kim, J.;Song, J.H.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.261-264
    • /
    • 2014
  • $SrTiO_3$ (STO) single crystal irradiated with a 3-MeV proton beam exhibits blue and green mixed luminescence. However, the same proton beam when used to irradiate STO with a very thin layer of deposited Pt does not show any luminescence. This Pt layer prevents any damage which may otherwise be caused by arcing, which stems from the accumulated surface voltage of tens of kV due to the charge induced by secondary electrons on the surface of the insulator during the ion beam irradiation process. Hence, the luminescence of ion-irradiated STO originates from the modification of the STO surface layer caused by arcing rather than from any direct ion beam irradiation effect. STO treated with atmospheric-pressure plasma, a simple and cost-effective method, also exhibits the same type of blue and green mixed luminescence as STO treated with an ion beam, as the plasma also creates a layer of surface damage due to arcing.

Improved cell adhesion to ion beam-irradiated biodegradable membranes (이온빔조사에 의한 생분해성 차폐막의 세포부착력 증진에 관한 연구)

  • Lee, Yong-Moo;Park, Yoon-Jeong;Lee, Seung-Jin;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.601-611
    • /
    • 1998
  • Ion irradiation is a very promising tool to modify the chemical structure and physical properities of polymers. This study was aimed to evaluate the cellular adhesion to ion beam-irradiated surface of biodegradable poly-l-lactide(PLLA) membrane. The PLLA membrane samples were irradiated by using 35 KeV $Ar^+$ to fluence of $5{\times}10^{13}$, $5{\times}10^{14}$ and $5{\times}10^{15}\;ion/cm^2$. Water contact angles to control and each dose of ion beam-irradiated PLLA membranes were measured. Cultured fetal rat calvarial osteoblasts were seeded onto control and each dose of ion beam-irradiated PLLA membranes and cultured. After 24 hours, each PLLA membranes onto which osteoblasts attached were examined by scanning electron microscopy(SEM). Osteoblasts were removed from each PLLA membrane and then, the vitality and the number of cells were calibrated. Alkaline phosphatase of detached cells from each PLLA membranes were measured. Ion beam-irradiated PLLA membranes showed no significantly morphological change from control PLLA membranes. In the measurement of water contact angle to each membrane, the dose range of ion beam employed in this study reduced significantly contact angles. Among them, $5{\times}10^{14}\;ion/cm^2$ showed the least contact angle. The vitalities of osteoblastes detached from each membranes were confirmed by flow cytometer and well attached cells with their own morphology onto each membranes were observed by SEM. A very strong improvement of the cell adhesion and proliferation was observed for ion beam-irradiated surfaces of PLLA membranes. $5{\times}10^{15}\;ion/cm^2$ exhibited the most strong effect also in cellular adherence. ALPase activities also tended to increase in ion beam-irradiated membranes but statistical differences were not found. These results suggested that ion beam irradiation is an effective tool to improve the adhesion and spreading behaviour of the cells onto the biodegradable PLLA membranes for the promotion of membrane-tissue integration.

  • PDF

Synthesis and Characterization of Cu(In,Ga)Se2 Nanostructures by Top-down and Bottom-up Approach

  • Lee, Ji-Yeong;Seong, Won-Kyung;Moon, Myoung-Woon;Lee, Kwang-Ryeol;Yang, Cheol-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.440-440
    • /
    • 2012
  • Nanomaterials have emerged as new building blocks to construct light energy harvesting assemblies. Size dependent properties provide the basis for developing new and effective systems with semiconductor nanoparticles, quantized charging effects in metal nanoparticle or their combinations in 2 and 3 dimensions for expanding the possibility of developing new strategies for photovoltaic system. As top-down approach, we developed a simple and effective method for the large scale formation of self-assembled Cu(In,Ga)$Se_2$ (CIGS) nanostructures by ion beam irradiation. The compositional changes and morphological evolution were observed as a function of the irradiation time. As the ion irradiation time increased, the nano-dots were transformed into a nano-ridge structure due to the difference in the sputtering yields and diffusion rates of each element and the competition between sputtering and diffusion processes during irradiation. As bottom-up approach, we developed the growth of CIGS nanowires using thermal-chemical vapor deposition (CVD) method. Vapor-phase synthesis is probably the most extensively explored approach to the formation of 1D nanostructures such as whiskers, nanorods, and nanowires. However, unlike binary or ternary chalcogenides, the synthesis of quaternary CIGS nanostructures is challenging because of the difficulty in controlling the stoichiometry and phase structure. We introduced a method for synthesis of the single crystalline CIGS nanowires in the form of chalcopyrite using thermal-CVD without catalyst. It was confirmed that the CIGS nanowires are epitaxially grown on a sapphire substrate, having a length ranged from 3 to 100 micrometers and a diameter from 30 to 500 nm.

  • PDF

Research of Liquid Crystal Alignment on Tantalum Oxide by Using Ion Beam Irradiation (이온빔 조사를 사용한 탄탈륨 산화막에서의 액정 배향에 대한 조사)

  • Lim, Ji-Hun;Oh, Byeong-Yun;Lee, Won-Kyu;Lee, Kang-Min;Na, Hyun-Jae;Park, Hong-Kyu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.300-300
    • /
    • 2008
  • In this study, the advanced DuoPIGatron-type ion beam (IB) system was applied to inorganic thin film for aligning liquid crystal (LC). LC alignment on $Ta_2O_5$ via IB irradiation was embodied. As a result of IB irradiation, the homogeneously aligned liquid crystal display (LCD) on $Ta_2O_5$ was observed with low pretilt angles. The $Ta_2O_5$ were deposited on indium-tin-oxide coated Coming 1737 glass substrates by rf magnetron sputtering at $200^{\circ}C$. The deposition process resulted in forming very uniform thin film on glass substrates without any defects. To confirm the application of the inorganic alignment on modem display optical devices, we fabricated twisted nematic LCD and measured optical property and response time. As a result of the experiment, the electro optical characteristics of the LCD fabricated by using IB irradiation on $Ta_2O_5$ alignment layer were similar with the other LCD fabricated by using rubbing process.

  • PDF

High energy swift heavy ion irradiation and annealing effects on DC electrical characteristics of 200 GHz SiGe HBTs

  • Hegde, Vinayakprasanna N.;Praveen, K.C.;Pradeep, T.M.;Pushpa, N.;Cressler, John D.;Tripathi, Ambuj;Asokan, K.;Prakash, A.P. Gnana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1428-1435
    • /
    • 2019
  • The total ionizing dose (TID) and non ionizing energy loss (NIEL) effects of 100 MeV phosphorous ($P^{7+}$) and 80 MeV nitrogen ($N^{6+}$) ions on 200 GHz silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were examined in the total dose range from 1 to 100 Mrad(Si). The in-situ I-V characteristics like Gummel characteristics, excess base current (${\Delta}I_B$), net oxide trapped charge ($N_{OX}$), current gain ($h_{FE}$), avalanche multiplication (M-1), neutral base recombination (NBR) and output characteristics ($I_C-V_{CE}$) were analysed before and after irradiation. The significant degradation in device parameters was observed after $100MeV\;P^{7+}$ and $80MeV\;N^{6+}$ ion irradiation. The $100MeV\;P^{7+}$ ions create more damage in the SiGe HBT structure and in turn degrade the electrical characteristics of SiGe HBTs more when compared to $80MeV\;N^{6+}$. The SiGe HBTs irradiated up to 100 Mrad of total dose were annealed from $50^{\circ}C$ to $400^{\circ}C$ in different steps for 30 min duration in order to study the recovery of electrical characteristics. The recovery factors (RFs) are employed to analyse the contribution of room temperature and isochronal annealing in total recovery.

The Studies of Irradiation Hardening of Stainless Steel Reactor Internals under Proton and Xenon Irradiation

  • Xu, Chaoliang;Zhang, Lu;Qian, Wangjie;Mei, Jinna;Liu, Xiangbing
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.758-764
    • /
    • 2016
  • Specimens of stainless steel reactor internals were irradiated with 240 keV protons and 6 MeV Xe ions at room temperature. Nanoindentation constant stiffness measurement tests were carried out to study the hardness variations. An irradiation hardening effect was observed in proton- and Xe-irradiated specimens and more irradiation damage causes a larger hardness increment. The Nix-Gao model was used to extract the bulk-equivalent hardness of irradiation-damaged region and critical indentation depth. A different hardening level under H and Xe irradiation was obtained and the discrepancies of displacement damage rate and ion species may be the probable reasons. It was observed that the hardness of Xe-irradiated specimens saturate at about 2 displacement/atom (dpa), whereas in the case of proton irradiation, the saturation hardness may be more than 7 dpa. This discrepancy may be due to the different damage distributions.

Investigations on ionic polymer actuators based on irradiation-crosslinked sulfonated poly(styrene-ran-ethylene)

  • Wang, Xuan-Lun;Oh, Il-Kwon;Xu, Liang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.316-317
    • /
    • 2009
  • The ion-exchange membrane, Nafion, remains as the benchmark for a majority of research and development in IPMC technology. In this research, we employed a novel ionomer named by sulfonated poly(styrene-ran-ethylene) (SPSE) that is crosslinked by UV irradiation. The sulfonic acid groups were stable during the UV irradiation crosslinking process. Water uptake, ion exchange capacity, and proton conductivity are characterized for both pure SPSE and crosslinked SPSE membrane. The bending responses of SPSE actuators under both direct current (DC) and alternating current (AC) excitations were investigated. The voltage-current behaviors of the actuators under AC excitations are also measured. Results showed the crosslinked SPSE actuators have better electromechanical performance than that of pure SPSE actuator with regard to tip displacement as a novel smart material.

  • PDF

Optical Reactivity Modification of Titanium Oxide coatings on Ceramic filters by Nitrogen ion Implantation

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.90-90
    • /
    • 2010
  • We investigated the modification of optical response properties of titanium dioxide (TiO2) coatings on the ceramic water-purification filters by using ultraviolet-visible absorption spectroscopy and X-ray diffraction. The TiO2 coatings were prepared on ceramic substrate by e-beam evaporation method. These amorphous TiO2 were turned into anatase phase by heat treatment at $700^{\circ}C$ for 2 hours. The doping of N atoms into the TiO2 coatings was done by using 70KeV of N+ ion implantation with the dose of $1.0{\times}1017$ ions/cm2, followed by post-irradiation heat treatment at $550^{\circ}C$ for 2 hours. Methylene blue test of TiO2 coatings to solar irradiation showed that the post-evaporation heated TiO2 was photocatalytic and N-doped TiO2 reacted to the visible part of solar irradiation.

  • PDF

Liquid Crystal Alignment Effect and Electro-Optical Characteristics of TN-LCD on a-C:H Thin Films (a-C:H 박막을 이용한 액정 배향 효과 및 TN-LCD 의 전기광학 특성)

  • Hwang, Jeong-Yeon;Jo, Yong-Min;Rho, Soon-Jun;Baik, Hong-Koo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.124-127
    • /
    • 2002
  • LC aligning capabilities and the variation of pretilt angles with ion beam irradiation on the a-C:H thin films, and electro-optical (EO) performances of the ion beam aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the a-C:H thin film were studied. A high pretilt angle of $3.5{^{\circ}}$ via ion beam irradiation on the a-C:H thin film was measured. Also, the LC pretilt angle decreased due to the increase in surface roughness at over 2 min of IB exposure time. It is considered that this roughness increase due to increasing IB exposure time that generated destroy of oriented rings of atoms related to LC alignment. An excellent voltage-transmittance (V-T) curve of the ion beam aligned TN-LCD was observed with oblique ion beam exposure on the a-C:H thin film for 1 min. Also, a faster response time for the ion beam aligned TN-LCD with oblique ion beam exposure on the a-C:H thin film for 1 min can be achieved. Finally, the residual DC property of the ion beam aligned TN-LCD with ion beam exposure of 1 min on the a-C:H thin film is almost same as that of the rubbing aligned TN-LCD on a PI surface.

  • PDF