• Title/Summary/Keyword: Ion extraction

Search Result 605, Processing Time 0.026 seconds

Effective Uranyl Binding by a Dihydroxyazobenzene Derivative. Ionization of Uranium-Bound Water

  • 이관표;장보빈;서정훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.814-819
    • /
    • 1996
  • In search of simple host molecules for uranyl ion which form 1: 1-type complexes with high formation constants that can be used either in extraction of uranium from seawater or in catalysis of biologically important organic reactions, the uranophile activities of dihydroxyazobenzene derivative 1 were studied. Uranyl ion and 1 form a 1: 1-type complex with a very large formation constant. The formation constant was measured at pH 7-11.6 by competition experiments with carbonate ion. From the resulting pH dependence, ionization constants of the two aquo ligands coordinated to the uranium of the uranyl complex of 1 were calculated. The ionization constants were also measured by potentiometric titration of the uranyl complex of 1. Based on these results, the pKa values of the two aquo ligands were estimated as 7.1 and 11.0, respectively. At pH 7.5-9.5, therefore, the complex exists mostly as monohydroxo species. Under the conditions of seawater, 1 possesses greater affinity toward uranyl ion compared with other uranophiles such as carbonate ion, calixarene derivatives, or a macrocyclic octacarboxylate. In addition, complexation of 1 with uranyl ion is much faster than that of the calixarene or octacarboxylate uranophiles.

Development of a Low Power Micro-Ion Engine Using Microwave Discharge

  • Koizumi, Hiroyuki;Kuninaka, Hitoshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.842-848
    • /
    • 2008
  • In this study, we propose a novel micro-ion engine system. Single plasma source is used for both ion beam source and neutralizing electron source. By changing the electrical connection, either operation can be switched. This micro-ion engine system gives translation motion and attitude control to microspacecraft. The major objective of this study is verification of our concept. Small plasma source of 20 mm diameter was developed. Plasma was sustained by microwave power. Using this plasma source, ion beam extraction and electron emission was successively demonstrated.

  • PDF

QMF Ion Beam System Development for Oxide Etching Mechanism Study (산화막 식각 기구 연구를 위한 QMF Ion Beam 장치의 제작)

  • 주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.220-225
    • /
    • 2004
  • A new ion beam extraction system is designed using a simple ion mass filter and a micro mass balance and a QMS based detecting system. A quadrupole Mass Filter is used for selective ion beam formation from inductively coupled high density plasma sources with appropriate electrostatic lens and final analyzing QMS. Also a quartz crystal microbalance is set between a QMF and a QMS to measure the etching and polymerization rate of the mass selected ion beam. An inductively coupled plasma was used as a ion/radical source which had an electron temperature of 4-8 eV and electron density of $4${\times}$10^{11}$#/㎤. A computer interfaced system through 12bit AD-DA board can control the pass ion mass of the qmf by setting RF/DC voltage ratio applied to the quadrupoles so that time modulation of pass ion's mass is possible. So the direct measurements of ion - surface chemistry can be possible in a resolution of $1\AA$/sec based on the qcm's sensitivity. A full set of driving software and hardware setting is successfully carried out to get fundamental plasma information of the ICP source and analysed $Ar^{+}$ beam was detected at the $2^{nd}$ QMS.

Improved Membranes for the Extraction of Heavy Metals

  • Xu, Jianying;Shen, Wei;Paimin, Rohani;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2004
  • This work presents a series of experimental tests on new practical approaches in membrane design to improve extraction capacity and rate. We chose an extraction system involving Aliquat 336 as the extractant and Cd(II) as the metal ion to be extracted to demonstrate these new approaches. The core element in the new membrane assembly was the extractant loaded sintered glass filter. This membrane assembly provided a large interface area between the extractant and the aqueous solution containing metal ions. By recycling the aqueous solution through the membrane assembly, the extraction rate was significantly improved. The membrane assembly also offered good extraction capacity.

A Novel Polymer Membrane for Extraction Applications

  • Wang, Xungai;Xu, Jianying;Paimin, Rohani;Shen, Wei
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.68-73
    • /
    • 2002
  • In this study, a new type of Aliquat 336/PVC membrane has been made for extraction experiments. This new membrane is capable of holding more Aliquat 336 than previously developed extraction membranes, hence overcoming a major problem that has confronted many researchers for a long time. The new membrane has been used try investigate the rate of extraction fur the Cd(II) ion in 2.0 M HCI solution and the effect of membrane thickness on the rate of extraction. The experimental results have shown this new membrane has a promising future in relevant industrial applications. A new method is also used in this study to qualitatively identify the oily substance on the surface of membrane after the extraction experiment was completed. This oily substance has been found to be Aliquat 336.

Synthesis and Use of a Ligand for the Extraction of Uranium (I) (우라늄 추출을 위한 리간드의 합성 및 응용 (제 1 보))

  • Chong Min Park;Suk Nam Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.315-321
    • /
    • 1987
  • The ligand, 2,10-dibenzyl-4,6,8-trioxo-3,9-diaza undecane dioic acid(DTDA) for the extraction of uranium was synthesized under dry nitrogen from phenylalanine and 3-oxoglutaric acid. Extraction was performed by stirring a solution of DTDA in dichloromethane for 1 hour with an aqueous solution of $UO_2(ClO_4)_2{\cdot}6H_2O$ at various pH values and at different $DTDA/UO_2{^{2+}}$ molar ratios. Extraction efficiency reaches a maximum when the pH of the aqueous phase was ca 8.0. The extraction percentage was affected by concentration of DTDA and increases with the $DTDA/UO_2{^{2+}}$ molar ratio to complete extraction with a 4 fold excess of DTDA. The high selectivity of the DTDA for uranium was ascertained by competition experiments with other cations. The bound uranyl ion was quantitatively liberated within few minutes from the organic phase by treatment with an aqueous 1M HCI solution and DTDA was recovered very satisfactorily from the organic phase. The values of the over-all formation constants of the complex between uranyl ion and DTDA were determined to be the following : ${\beta}_1=1.20{\times}10^5\;,\;{\beta}_2=1.01{\times}10^8$.

  • PDF

Competitive Solvent Extraction of the Mixture of Alkali Metal and Alkaline Earth Metal Cation containing Crown Ether Carboxylic Acid and Crown Ether Phosphonic Acid (크라운에테르 카르복시산과 크라운에테르 포스포닉산을 포함한 알칼리 금속과 알칼리 토금속 양이온 혼합물의 경쟁적 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Competitive solvent extraction of the mixure of alkali metal and alkaline earth cation from water into organic solvent containing the crown ether carboxylic acid and anlogous crown ether phosphonic acid was investigated as follows. The lipophilic group is found to strongly influence to the selective extraction in the mixed systems from only alkali metal cation for sym-(n-decyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ to mostly alkaline earth metal cation for sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxyacetic acid $\underline{3}$. Monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid $\underline{2}$. and monoethyl-sym- bis]4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{4}$ showed good selectivity for $Na^+$ over $Mg^{2+}$, the second extracted ion. Structural variation in the crown ether phosphonic acid somewhat was influenced to the extraction selectivity in the mixed systems. when variation of the ionized group is influenced in the mixed systems, the selectivity of $Na^+$ as the second extracted ion was much better crown ether carboxylic acid $\underline{1}$ than crown ether phosphonic acid $\underline{2}$, while the efficiency of $Na^+$ extraction was better $\underline{2}$ (83% total loading) than $\underline{1}$ (32%).

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Effects of Extraction Method on Anserine, Protein, and Iron Contents of Salmon (Oncorhynchus keta) Extracts (연어(Oncorhynchus keta) 추출물 중의 Anserine, 단백질 및 철분 함량에 미치는 추출방법의 영향)

  • Min, Hye-Ok;Park, In-Myoung;Song, Ho-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.220-228
    • /
    • 2017
  • Effects of extraction methods on reducing concentrations of pro-oxidants (total iron and protein) of salmon was determined. For development of the extraction process, the effectiveness of several extraction methods was determined and compared, including heat treatment (60, 80, and $100^{\circ}C$), ion exchange and carboxymethyl (CM)-cellulose column chromatography, and ultrafiltration (UF). Protein, total iron, and anserine contents of salmon extracts were 23.64 mg/mL, $16.20{\mu}g/mL$, and 5.47 mg/mL in non-heated extracts, 7.40 mg/mL, $2.32{\mu}g/mL$, and 5.20 mg/mL in heated extracts at $60^{\circ}C$, 7.64 mg/mL, $1.20{\mu}g/mL$, and 5.21 mg/mL at $80^{\circ}C$, and 7.04 mg/mL, $0.68{\mu}g/mL$, and 4.04 mg/mL at $100^{\circ}C$, respectively. Heating and UF decreased contents of protein and total iron, whereas only UF slightly decreased anserine content. Application of the primary ion exchange method increased the content of anserine up to 16%. Protein and total iron contents by the primary ion exchange method decreased by 70 and 98%, respectively. Secondary ion exchange (CM-cellulose) treatment after primary ion exchange and UF resulted in lower anserine content than the primary ion exchange method. However, the content of impurities (protein, total iron) was lower than in all other salmon extracts. Therefore, primary ion exchange, UF, and secondary ion exchange method were the best extraction processes in this study.