• Title/Summary/Keyword: Ion exchanger

Search Result 159, Processing Time 0.028 seconds

Preparation of Quaternary Ammonium Salt Derivatives Supported on Silica gel and Its Ion Exchange Characteristics (실리카겔에 담지된 4급암모늄염 유도체의 합성 및 이온교환 특성)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The ion exchangers supported on silica gel containing primary, secondary, or tertiary amine groups show a behaviour that is weakly acidic, while the quaternary salts are strongly acidic. These properties change according to the hydrophilicities of the modifier functional groups. Ammonium salt derivatives supported on silica gel were prepared from silica modified with 3-Aminopropyltriethoxysiliane and N-3-(Trimethoxysilyl)propylehtylene diamine. The preparation and the ion exchange properties of two systems were discussed. Two systems have different hydrophilicities and contain ammonium chloride derivatives of 3-amminopropyltriethoxysilane and N-3-(triehtoxysilyl)propyl ethylene diamine supported on silica gel, $SA^+/Cl^-$ and $SA^+/Cl^-$, respectively. The high affinity to perchlorate ion presented by the $SA^+/Cl^-$ through the equilibrium studies of ion exchange led us to its application as an ion selective electrode for the perchlorate ion. The determination of the perchlorate ion in the presence of other anions and in complexes is very difficult. Few analytical methods are available and most of them are indirect. Both materials showed potential use as an ion exchanger; they are thermically stable, achieve equilibrium rapidly in the presence of suitable exchanger ions, and are easily recovered.

Modeling the Cardiac Na+/H+ Exchanger Based on Major Experimental Findings

  • Cha, Chae Young;Noma, Akinori
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • $Na^+-H^+$ exchanger (NHE) is the main acid extruder in cardiac myocytes. We review the experimental findings of ion-dependency of NHE activity, and the mathematical modeling developed so far. In spite of extensive investigation, many unsolved questions still remain. We consider that the precise description of NHE activity with mathematical models elucidates the roles of NHE in maintaining ionic homeostasis, especially under pathophysiological conditions.

Effect of Packing Density of ion-Exchange on the Nickel Adsorption Column in Electroplating Rinse Water (이온교환 칼럼 충진비의 변화가 도금폐수 중 니켈이온 흡착에 미치는 영향)

  • 황택성;이진혁
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.551-558
    • /
    • 2002
  • It was observed that adsorption characteristics of sulfonated fabric ion-exchanger for separating nickel ion from electroplating rinse water. Swelling ratio was increased by increasing degree of sulfonation and polarity of solvent. Ion-exchange capacity was also increased by increasing degree of sulfonation and showed 3.38 meq/g at 16% sulfonated ion-exchanger. There was little effects of pH. Adsorption equilibrium was attained within 10 min, and adsorption rate was 7.5 mg/min. Adsorption capacity was not changed after 7 cycles of regeneration process. Regeneration adsorption capacity was slightly decreased to 2.01 meq/g. It confirmed that durability of sulfonated fabric ion-exchanger was suitable for adsorption process. Adsorption equilibrium time was linearly increased by increasing L/D and adsorption capacity showed the ion exchange capacity within the range of 2.71 ∼ 3.01 meq/g in continuous process. Design of adsorption column could be possible for L/D<2. Under constant L/D condition, there is no little pH effect when rinse water is acidic solution, and operation condition of adsorption process was optimized under pH 5.

Treatment of Nitrogen Oxides in Ambient Air using a Ion-Selective Electrode (대기중 질산화물의 이온 선택성 전극에 의한 처리)

  • 안형환;우인성;강안수;이영순;김윤선
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.40-49
    • /
    • 1990
  • For the determination of polluant NOx in ambient air, nitrate ion-selective electrode(ISE) was made. To comparison of NOx in each method, the nitrate-ISE, NEBA, Orion electrode were used to determinee NOx in ambient air. In this work, the concentration of NOx in ambient air was average 0.06ppm. The results were good agreement with those obtained by each method within a relative error of 3%, Absorbing efficiency of nitrogen oxides in ambient air was good for Alkali solution. The determination of nitrogen oxides in ambient air using the Aliquat 336N-PVC membrane electrode was one of the useful method. The best characteristics of the Aliquat 336N-PVC me,mbrane electrode were obtained with the ion-exchanger concentration level of 6.5-9.1 percent by weight. The optimal membrane composition, was 9.09wt.% of ion-exchanger, 30.95wt.% of PVC, 60.6wt.% of plasticizer (DBP), and 0.5mm of thickness. Under the above condition, the electrode approached the Nernstian slope most closely, and the linear response ranges produced the best results.

  • PDF

Nitrate Ion-Selective Membrane Electrode Based on Complex of (Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) Nitrate ((Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) 착물의 질산이온 선택성 막전극)

  • Doo-Soon Shin;Chung Ki-Won
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.383-392
    • /
    • 1992
  • (Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) Nitrate complexes were tested as ion exchanger for nitrate ion-selective electrode. The experimentally observed selectivity and electrode characteristics were relatively in good agreement with the exchanger lipophilicity in the membrane phase. Based on chemical composition, mechanisms for exchange with nitrate ion and internal electrical conduction were postulated. Analytical application to the determination of nitrate were studied.

  • PDF

Synthesis of Aminated PP-g-styrene Fibrous Ion-Exchanger for Separation of Boron from Ground-Water (지하수로부터 붕소이온 분리를 위한 아민화 PP-g-styrene 이온교환체 섬유의 합성과 붕소 음이온 흡착에 관한 연구)

  • Hwang, Taek-Sung;Lee, Jin-Hyok;Lee, Myun-Joo
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.451-459
    • /
    • 2001
  • Fabric ion-exchanger, aminated PP-g-styrene was synthesized with styrene monomer onto PP staple fiber by pre-irradiational grafting with E-beam and subsequent chloromethylation and amination. Degree of grafting was increased with increasing the styrene monomer concentration and the highest degree of grafting was obtained 118% at a monomer concentration of 80% styrene. Optimum condition of Mohr's salt and sulphuric acid were 1.0 ${\times}\;10^{-3}$ M and 0.1 M. Amount of amination was increased with increasing degree of grafting. Swelling ratio of aminated PP-g styrene was higher than that of trunk polymer. Ion-exchange capacity was 6.7 meq/g, which was three times greater than commercial ion-exchanger. Optimum condition of baron ion adsorption was pH 4 and amount of adsorption were increased with increasing the amount of amination.

  • PDF

Synthesis of Sulfonated Poly(styrene-co-DVB) Hyper Branched Cationic Exchange Resin and Its Properties (하이퍼브랜치 Poly(styrene-co-DVB) 설폰화 양이온교환 수지의 합성 및 특성)

  • Baek, Ki-Wan;Yeom, Bong-Yeol;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • In this study, the hyper branched poly (styrene-co-divinylbenzene) (PSD) was synthesized by bulk polymerization and the cationic exchanger with high ion exchange capacity was prepared by sulfonation. The structure of hyper branched PSD ion exchanger was investigated by FT-IR, $^1H-NMR$ spectroscopy, and GPC analysis. The molecular weight, viscosity of hyper branched PSD increased with DVB content, which have the maximum values of 9410g/mol and 338 cP, respectively. And the reaction rate also increased with cross-linker content. As DVB content increased, the solubility of PSD decreased having the maximum value of 22 g with 0.1 mol% DVB. The water content and ion exchange capacity of the hyper branched PSD ion exchanger increased with the amount of sulfuric group. Their maximum values were 18.2% and 4.6 meq/g, respectively. The adsorption of copper and nickel ion was completed within 40 min.