• Title/Summary/Keyword: Ion exchange reaction

검색결과 373건 처리시간 0.027초

광조사 중합법에 의해 합성된 PP-g-AA와 PP-g-St 부직포의 암모니아성 질소 흡착특성 비교 (Ammonium Adsorption Property of Acrylic Acid and Styren Grafting Polypropylene Non-Woven Fabric Synthesized by Photo-induced Polymerization)

  • 박현주;나춘기
    • 한국환경과학회지
    • /
    • 제17권11호
    • /
    • pp.1255-1263
    • /
    • 2008
  • The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal $NH_3-N$ from waste water was evaluated. The results evidently indicate that the adsorption capacities of $NH_3-N$ onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of $NH_3-N$ at the degree of grafting of 80 wt.%. The adsorption behaviour of $NH_3-N$ onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N ${H_2}{O_4}$. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the $NH_3-N$ removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

Recombinant Glargine Insulin Production Process Using Escherichia coli

  • Hwang, Hae-Gwang;Kim, Kwang-Jin;Lee, Se-Hoon;Kim, Chang-Kyu;Min, Cheol-Ki;Yun, Jung-Mi;Lee, Su Ui;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1781-1789
    • /
    • 2016
  • Glargine insulin is a long-acting insulin analog that helps blood glucose maintenance in patients with diabetes. We constructed the pPT-GI vector to express prepeptide glargine insulin when transformed into Escherichia coli JM109. The transformed E. coli cells were cultured by fed-batch fermentation. The final dry cell mass was 18 g/l. The prepeptide glargine insulin was 38.52% of the total protein. It was expressed as an inclusion body and then refolded to recover the biological activity. To convert the prepeptide into glargine insulin, citraconylation and trypsin cleavage were performed. Using citraconylation, the yield of enzymatic conversion for glargine insulin increased by 3.2-fold compared with that without citraconylation. After the enzyme reaction, active glargine insulin was purified by two types of chromatography (ion-exchange chromatography and reverse-phase chromatography). We obtained recombinant human glargine insulin at 98.11% purity and verified that it is equal to the standard of human glargine insulin, based on High-performance liquid chromatography analysis and Matrix-assisted laser desorption/ionization Time-of-Flight Mass Spectrometry. We thus established a production process for high-purity recombinant human glargine insulin and a method to block Arg (B31)-insulin formation. This established process for recombinant human glargine insulin may be a model process for the production of other human insulin analogs.

과산화수소를 이용한 V2O5 Xerogel의 합성 및 전기화학적 특성 (The Electrochemical Properties and Synthesis of V2O5 Xerogel using H2O2)

  • 박희구;정재엽;이만호
    • 공업화학
    • /
    • 제16권1호
    • /
    • pp.107-111
    • /
    • 2005
  • $V_2O_5$ 분말을 과산화수소에 용해시켜 $V_2O_5$ 겔을 졸-겔법으로 합성한 후 물성과 전기화학적 특성을 NMR, 선형전압전류법 등을 이용하여 조사하였다. $V_2O_5$ xerogel에 삽입된 $Li^+$ 이온의 량에 따라 NMR 스펙트라의 화학적이동값이 다르게 나타났으며 xerogel 구조 내에서 다른 환경의 리튬이온 자리가 존재함을 알 수 있었다. 합성에 이용한 $V_2O_5$의 초기농도 변화와 pH 변화에 따른 xerogel의 전기화학적 특성은 큰 차이가 나타나지 않았으며, 전지용량은 이온교환수지법으로 제조한 xerogel과 비슷한 140 mAh/g으로 나타났다.

Adsorption Characteristics of Multi-Metal Ions by Red Mud, Zeolite, Limestone, and Oyster Shell

  • Shin, Woo-Seok;Kang, Ku;Kim, Young-Kee
    • Environmental Engineering Research
    • /
    • 제19권1호
    • /
    • pp.15-22
    • /
    • 2014
  • In this study, the performances of various adsorbents-red mud, zeolite, limestone, and oyster shell-were investigated for the adsorption of multi-metal ions ($Cr^{3+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $As^{3+}$, $Cd^{2+}$, and $Pb^{2+}$) from aqueous solutions. The result of scanning electron microscopy analyses indicated that the some metal ions were adsorbed onto the surface of the media. Moreover, Fourier transform infrared spectroscopy analysis showed that the Si(Al)-O bond (red mud and zeolite) and C-O bond (limestone and oyster shell) might be involved in heavy metal adsorption. The changes in the pH of the aqueous solutions upon applying adsorbents were investigated and the adsorption kinetics of the metal ions on different adsorbents were simulated by pseudo-first-order and pseudo-second-order models. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact (except for $As^{3+}$). From the maximum capacity of the adsorption kinetic model, the removal of $Pb^{2+}$ and $Cu^{2+}$ were higher than for the other metal ions. Meanwhile, the reaction rate constants ($k_{1,2}$) indicated the slowest sorption in $As^{3+}$. The adsorption mechanisms of heavy metal ions were not only surface adsorption and ion exchange, but also surface precipitation. Based on the metal ions' adsorption efficiencies, red mud was found to be the most efficient of all the tested adsorbents. In addition, impurities in seawater did not lead to a significant decrease in the adsorption performance. It is concluded that red mud is a more economic high-performance alternative than the other tested adsorption materials for applying a removal of multi-metal in seawater.

라포나이트-X(X = Eu, Tb) 형광체의 합성 및 열적 안정성과 발광특성 연구 (Synthesis, photoluminescence and thermal properties of laponite-X (X = Eu, Tb) phosphors)

  • 김표라;손동민;이한나;김유혁
    • 한국결정성장학회지
    • /
    • 제19권4호
    • /
    • pp.196-201
    • /
    • 2009
  • 본 연구에서는 라포나이트의 발광 기능성을 부여하기 위하여 수용액에서 라포나이트의 층간에 존재하는 Na 이온을 Eu 및 Tb 이온으로 치환하여 동결 건조 후 소성하여 라포나이트-X(X=Eu, Tb) 형광체를 제조하였다. 합성된 형광체의 열적 안정성을 조사하기 위하여 여러 온도에서 소성하여 XRD로 결정구조를 분석한 후 형광체가 $600^{\circ}C$까지 안정하고 $700^{\circ}C$ 이후에는 새로운 결정상이 형성됨을 확인할 수 있었다. 합성된 형광체의 발광 특성은 UV 및 VUV 여기 광원하에서 조사하였으며 적색 및 녹색 발광 특성은 $300^{\circ}C$$500^{\circ}C$에서 각각 $Eu^{3+}$$Tb^{3+}$에 기인하는 발광 피이크로 확인 할 수 있었다.

Isolation and Properties of Cytoplasmic α-Glycerol 3-Phosphate Dehydrogenase from the Pectoral Muscle of the Fruit Bat, Eidolon helvum

  • Agboola, Femi Kayode;Thomson, Alan;Afolayan, Adeyinka
    • BMB Reports
    • /
    • 제36권2호
    • /
    • pp.159-166
    • /
    • 2003
  • Cytoplasmic $\alpha$-glycerol-3-phosphate dehydrogenase from fruit-bat-breast muscle was purified by ion-exchange and affinity chromatography. The specific activity of the purified enzyme was approximately 120 units/mg of protein. The apparent molecular weight of the native enzyme, as determined by gel filtration on Sephadex G-100 was $59,500{\pm}650$ daltons; its subunit size was estimated to be $35,700{\pm}140$ by SDS-polyacrylamide gel electrophoresis. The true Michaelis-Menten constants for all substrates at pH 7.5 were $3.9{\pm}0.7\;mM$, $0.65{\pm}0.05\;mM$, $0.26{\pm}0.06\;mM$, and $0.005{\pm}0.0004\;mM$ for L-glycerol-3-phosphate, $NAD^+$, DHAP, and NADH, respectively. The true Michaelis-Menten constants at pH 10.0 were $2.30{\pm}0.21\;mM$ and $0.20{\pm}0.01\;mM$ for L-glycerol-3-phosphate and $NAD^+$, respectively. The turnover number, $k_{cat}$, of the forward reaction was $1.9{\pm}0.2{\times}10^4\;s^{-1}$. The treatment of the enzyme with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) under denaturing conditions indicated that there were a total of eight cysteine residues, while only two of these residues were reactive towards DTNB in the native enzyme. The overall results of the in vitro experiments suggest that $\alpha$-glycerol-3-phosphate dehydrogenase of the fruit bat preferentially catalyses the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate.

고성능 액체크로마토 그래피에 의한 Dansyl-아미노산 광학이성질체의 분리 (Separation of Optical Isomers of DNS-Amino Acids in High-Performance Liquid Chromatography)

  • 이선행;오대섭;박경숙
    • 대한화학회지
    • /
    • 제30권2호
    • /
    • pp.216-223
    • /
    • 1986
  • Dansyl 유도화된 아미노산의 광학이성질체를 분리하기 위해 광학활성인 L-arginine과 몇가지 금속(구리, 아연, 카드뮴, 니켈)의 킬레이트를 이동상에 첨가하여 역상 칼럼내에서 분리를 시도했다. 구리 킬레이트 이외의 것은 광학이성질체의 분리가 안되었다. 아미노산의 광학이성질체의 분리 거동은 이동상의 pH 및 유기용매조성, 완충용액의 종류와 농도, 금속의 종류와 킬레이트 농도에 의해 영향을 받음을 알 수 있었다. Valine, metionine, leucine, phenylalanine은 D형이 먼저 용리되고 serine과 alanine은 L형이 먼저 용리되었으며 threonine은 D형과 L형의 분리현상이 나타나지 않았다. 이러한 분리거동은 리간드 교환반응에 의한 (D, L-DNS-AA) (M) (L-Arg) 3종류 착물이 형성될때의 입체 특이성효과로써 설명할 수 있다.

  • PDF

화랑곡나방(Plodia interpunctella Hubner) Carboxylesterase-III의 정제 및 생화학적 특성 (Purification and Biochemical Characterization of Carboxylesterase-III from Plodia interpunctella Hubner)

  • 박희윤;유종명
    • 한국연초학회지
    • /
    • 제21권2호
    • /
    • pp.160-170
    • /
    • 1999
  • Purification and biochemical experiments on the carboxylesterases-III (CE-III) from the indian meal moth, Plodia interpunctella (Hubner) were carried out to understand their enzymemological characteristics. The CE-III from the fifth instar larvae was purified by means of ammonium sulfate fractionation, gel permeation choromatography and ion exchange choromatography. The optimal temperature for the reaction of the CE-III on the 4 substrates ($\alpha$-Na, $\alpha$-Nb, $\beta$-Na and $\beta$-Nb) was confirmed at 4$0^{\circ}C$. The optimal pH for the reactions on the substrates $\alpha$-Na and $\alpha$-Nb was 7.5. But the optimal pH on the substrate $\beta$-Na and $\beta$-Nb was 8.0. The optimal substrate concentration for the reactions of the CE-III was 3.16 X 10$^{-3}$ M in $\alpha$-Na and $\beta$-Nb. On the substrate $\beta$-Na and $\alpha$-Nb, the optimal substrate concentration was 1.0 X 10$^{-3}$ M for CE-III. The $V_{max}$ and $K_{m}$ values of the carboxylesterases were varied by the substrates as followings: the $V_{max}$ of CE-III was 45.9 for $\alpha$-Na, 52.6 for $\beta$-Na, 36.4 for $\alpha$-Nb, and 83.3 ($\mu$ mol/min/mg protein) for $\beta$-Nb. The $K_{m}$ of CE-III was 1.43 X 10$^{-4}$ M for $\alpha$-Na, 3.57 x 10$^{-5}$ M for $\beta$-Na, 9.17 X 10$^{-5}$ M for $\alpha$-Nb, and 7.14 X 10$^{-5}$ M for $\beta$ -Nb, respectively. The CE-III seemed to have somewhat high thermostability considering that the temperature for effective denaturation on activity was about 5$0^{\circ}C$ ~ 6$0^{\circ}C$.EX>.EX>.

  • PDF

고분자 가교반응 시스템 (Crosslinking reaction system of polymers)

  • 고종성
    • 한국응용과학기술학회지
    • /
    • 제29권1호
    • /
    • pp.19-32
    • /
    • 2012
  • 가교에 관한 리뷰논문으로 특허의 다수는 의료용이다. 조직공학용 지지체나 약물전달용 매체로 쓰이는 고분자의 가교는 세포 무독성, 제 자리 겔 형성성이 있는 가교반응을 중시하고 있다. 가교를 탄성률, 내약품성, 내열성의 증대 목적 외에 가교부위에 금속 흡착성, 방오성, 항균성, 이온교환성 등의 기능을 부여하고 있다. 환경의 자극에 응답하는 스마트 가교, 환경을 고려한 광 가교, 물리적 가교, 효소가교, 천연물 가교, 수성가교가 연구되고 있다. 120세 수명을 목표로 의용재료의 발전에 고분자 소재의 개발도 필수적이다. 가교를 통한 고분자의 기능성 부여 및 물성 강화도 더욱 섬세하게 될 것이다. 고분자 가교물 중의 중요한 분야를 점하는 히드로젤은 주사용 제자리 겔 형성성의 개선 방향으로 전개될 것이다. 코팅용 고분자 가교제는 작업자, 작업환경을 고려하여 저독성-무독성의 가교제, 낮은 에너지에서 가교되는 에너지 절약형 가교제가 개발될 것이다.