Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02053

Recombinant Glargine Insulin Production Process Using Escherichia coli  

Hwang, Hae-Gwang (Department of Pharmacy, Sunchon National University)
Kim, Kwang-Jin (Department of Pharmacy, Sunchon National University)
Lee, Se-Hoon (Department of Pharmacy, Sunchon National University)
Kim, Chang-Kyu (Division of Animal Resources and Life Science, Sangji University)
Min, Cheol-Ki (Department of Integrated Biotechnology, Sogang University)
Yun, Jung-Mi (Department of Food and Nutrition, Chonnam National University)
Lee, Su Ui (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
Son, Young-Jin (Department of Pharmacy, Sunchon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.10, 2016 , pp. 1781-1789 More about this Journal
Abstract
Glargine insulin is a long-acting insulin analog that helps blood glucose maintenance in patients with diabetes. We constructed the pPT-GI vector to express prepeptide glargine insulin when transformed into Escherichia coli JM109. The transformed E. coli cells were cultured by fed-batch fermentation. The final dry cell mass was 18 g/l. The prepeptide glargine insulin was 38.52% of the total protein. It was expressed as an inclusion body and then refolded to recover the biological activity. To convert the prepeptide into glargine insulin, citraconylation and trypsin cleavage were performed. Using citraconylation, the yield of enzymatic conversion for glargine insulin increased by 3.2-fold compared with that without citraconylation. After the enzyme reaction, active glargine insulin was purified by two types of chromatography (ion-exchange chromatography and reverse-phase chromatography). We obtained recombinant human glargine insulin at 98.11% purity and verified that it is equal to the standard of human glargine insulin, based on High-performance liquid chromatography analysis and Matrix-assisted laser desorption/ionization Time-of-Flight Mass Spectrometry. We thus established a production process for high-purity recombinant human glargine insulin and a method to block Arg (B31)-insulin formation. This established process for recombinant human glargine insulin may be a model process for the production of other human insulin analogs.
Keywords
Diabetes; glargine; fed-batch fermentation; citraconylation; Arg (B31)-insulin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rasmussen LJ, Lobner-Olesen A, Marinus MG. 1995. Growth-rate-dependent transcription initiation from the dam P2 promoter. Gene 157: 213-215.   DOI
2 Rudolph R, Lilie H. 1996. In vitro folding of inclusion body proteins. FASEB J. 10: 49-56.   DOI
3 Schnaitman CA. 1971. Effect of ethylenediaminetetraacetic acid, Triton X-100, and lysozyme on the morphology and chemical composition of isolate cell walls of Escherichia coli. J. Bacteriol. 108: 553-563.
4 Seo MJ, Choi HJ, Chung KH, Pyun YR. 2011. Production of a platelet aggregation inhibitor, salmosin, by high cell density fermentation of recombinant Escherichia coli. J. Microbiol. Biotechnol. 21: 1053-1056.   DOI
5 Shetty JK, Kinsella JE. 1980. Ready separation of proteins from nucleoprotein complexes by reversible modification of lysine residues. Biochem. J. 191: 269-272.   DOI
6 Shiloach J, Fass R. 2005. Growing E. coli to high cell density - historical perspective on method development. Biotechnol. Adv. 23: 345-357.   DOI
7 Bottazzo GF, Florin-Christensen A, Doniach D. 1974. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2: 1279-1283.   DOI
8 Clark EDB. 1998. Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9: 157-163.   DOI
9 Evnin LB, Vasquez JR, Craik CS. 1990. Substrate specificity of trypsin investigated by using a genetic selection. Proc. Natl. Acad. Sci. USA 87: 6659-6663.   DOI
10 Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. 2003. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26 Suppl 1: S5-S20.   DOI
11 Sreenivas S, Krishnaiah SM, Govindappa N, Basavaraju Y, Kanojia K, Mallikarjun N, et al. 2015. Enhancement in production of recombinant two-chain insulin glargine by over-expression of Kex2 protease in Pichia pastoris. Appl. Microbiol. Biotechnol. 99: 327-336.   DOI
12 Sonksen P, Sonksen J. 2000. Insulin: understanding its action in health and disease. Br. J. Anaesth. 85: 69-79.   DOI
13 Ferrannini E. 2012. Physiology of glucose homeostasis and insulin therapy in type 1 and type 2 diabetes. Endocrinol. Metab. Clin. North Am. 41: 25-39.   DOI
14 Galloway JA, Chance RE. 1994. Improving insulin therapy: achievements and challenges. Horm. Metab. Res. 26: 591-598.   DOI
15 Gavin III JR, Alberti K, Davidson MB, DeFronzo RA. 1997. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20: 1183.   DOI
16 Graf L, Jancso A, Szilagyi L, Hegyi G, Pinter K, Naray-Szabo G, et al. 1988. Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sci. USA 85: 4961-4965.   DOI
17 Son Y, Kim C, Kim YB, Kweon D, Park Y, Seo J. 2009. Effects of citraconylation on enzymatic modification of human proinsulin using trypsin and carboxypeptidase B. Biotechnol. Prog. 25: 1064-1070.   DOI
18 Son Y, Park K, Lee S, Oh S, Kim C, Choi B, Park Y, Seo J. 2007. Effects of temperature shift strategies on human preproinsulin production in the fed-batch fermentation of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 12: 556-561.   DOI
19 Yadav S, Parakh A. 2006. Insulin therapy. Indian Pediatr. 43: 863-872.
20 Gu Z, Weidenhaupt M, Ivanova N, Pavlov M, Xu B, Su Z, Janson J. 2002. Chromatographic methods for the isolation of, and refolding of proteins from, Escherichia coli inclusion bodies. Protein Expr. Purif. 25: 174-179.   DOI
21 Habeeb A, Atassi MZ. 1970. Enzymic and immunochemical properties of lysozyme. Evaluation of several amino group reversible blocking reagents. Biochemistry 9: 4939-4944.   DOI
22 Haist RE, Best CH. 1940. Factors affecting the insulin content of pancreas. Science 91: 410.   DOI
23 Kadlčík V, Strohalm M, Kodíček M. 2003. Citraconylation — a simple method for high protein sequence coverage in MALDI-TOF mass spectrometry. Biochem. Biophys. Res. Commun. 305: 1091-1093.   DOI
24 Lan MS, Wasserfall C, Maclaren NK, Notkins AL. 1996. IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA 93: 6367-6370.   DOI
25 Khajeh K, Naderi-Manesh H, Ranjbar B, Moosavi-Movahedi A, Nemat-Gorgani M. 2001. Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and stability. Enzyme Microb. Technol. 28: 543-549.   DOI
26 Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer WD. 1995. Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol. 39: 59-65.   DOI
27 Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132.   DOI
28 Middelberg AP, O’Neill BK. 1991. Monitoring the centrifugal recovery of recombinant protein inclusion bodies. Aust. J. Biotechnol. 5: 87-89.
29 Lee SY. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98-105.   DOI
30 Loghmani E. 2005. Diabetes mellitis: type 1 and type 2, pp. 167-182. In Stang J, Story M (eds.). Guidelines for Adolescent Nutrition Services. Center for Leadership, Education and Training in Maternal and Child Nutrition, Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN.
31 Olsen JV, Ong SE, Mann M. 2004. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3: 608-614.   DOI
32 Alberti KG, Zimmet PZ. 1998. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15: 539-553.   DOI
33 Mossavarali S, Hosseinkhani S, Ranjbar B, Miroliaei M. 2006. Stepwise modification of lysine residues of glucose oxidase with citraconic anhydride. Int. J. Biol. Macromol. 39: 192-196.   DOI
34 Murray HD, Appleman JA, Gourse RL. 2003. Regulation of the Escherichia coli rrnB P2 promoter. J. Bacteriol. 185: 28-34.   DOI
35 Naglak TJ, Wang HY. 1990. Recovery of a foreign protein from the periplasm of Escherichia coli by chemical permeabilization. Enzyme Microb. Technol. 12: 603-611.   DOI
36 Nieto MA, Palacián E. 1983. Effects of temperature and pH on the regeneration of the amino groups of ovalbumin after modification with citraconic and dimethylmaleic anhydrides. Biochim. Biophys. Acta 749: 204-210.   DOI
37 Owens DR, Zinman B, Bolli GB. 2001. Insulins today and beyond. Lancet 358: 739-746.   DOI
38 Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, et al. 1990. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347: 151-156.   DOI
39 Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MM, Ramadan HA, et al. 2014. Cell factories for insulin production. Microb. Cell Fact. 13: 141.   DOI
40 Owens DR. 2002. New horizons — alternative routes for insulin therapy. Nat. Rev. Drug Discov. 1: 529-540.
41 Poon K, King AB. 2010. Glargine and detemir: safety and efficacy profiles of the long-acting basal insulin analogs. Drug Healthc. Patient Saf. 2: 213-223.
42 Bonifacio E, Genovese S, Braghi S, Bazzigaluppi E, Lampasona V, Bingley PJ, et al. 1995. Islet autoantibody markers in IDDM: risk assessment strategies yielding high sensitivity. Diabetologia 38: 816-822.   DOI
43 Bhambure R, Rathore AS. 2013. Chromatography process development in the quality by design paradigm I: establishing a high-throughput process development platform as a tool for estimating “characterization space” for an ion exchange chromatography step. Biotechnol. Prog. 29: 403-414.   DOI
44 Bindels J, Misdom L, Hoenders H. 1985. The reaction of citraconic anhydride with bovine α-crystallin lysine residues. Surface probing and dissociation-reassociation studies. Biochim. Biophys. Acta 828: 255-260.   DOI
45 Bolli G, Di Marchi R, Park G, Pramming S, Koivisto VA. 1999. Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia 42: 1151-1167.   DOI
46 Borg N, Brodsky Y, Moscariello J, Vunnum S, Vedantham G, Westerberg K, Nilsson B. 2014. Modeling and robust pooling design of a preparative cation-exchange chromatography step for purification of monoclonal antibody monomer from aggregates. J. Chromatogr. A 1359: 170-181.   DOI