• Title/Summary/Keyword: Ion exchange membrane

Search Result 467, Processing Time 0.026 seconds

Enhanced Desalination Performance through Nafion-coated Cathode in Capacitive Deionization (축전식 탈염에서 나피온 코팅 음극을 통한 담수화 성능 향상)

  • Kim, Jieun;Jung, Seongwoo;Kim, Jinwook;Kim, Jaehwan;Kwak, Rhokyun
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • An effective capacitive deionization process termed membrane capacitive deionization (MCDI) is newly designed and experimentally tested for seawater desalination. By preventing co-ions to be expelled, MCDI can improve the ion removal performance, but there is a trade-off between blocking co-ion transfer and increasing contact resistance. The conventional MCDI uses 2D-shaped films which increase contact resistance and reduce desalination performance in the trade-off. In this paper, with the 3-D shape of Nafion coated activated carbon cloth, the mentioned problems are expected to be solved making the desalination performance better. We visualized ion concentration and fluid flows with half-MCDI cell that can measure only efficiency of cathode. We found the optimal number of coatings which have the better efficiency than CMX, commercial cation exchange membrane in fixed current conditions of 100uA.

A Comparative Study of Sulfate and Chloride Intrusion in Mortar Sections: An Approach Using Laser Induced Breakdown Spectroscopy and Ion Exchange Membrane (LIBS와 이온교환막을 활용한 모르타르 단면 침투 황산염과 염화물 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • This research aimed to conduct an empirical assessment of the penetration of chloride and sulfate ions into mortar sections using an anion exchange membrane(AEM) and laser-induced breakdown spectroscopy(LIBS). The study involved a simultaneous ion chromatography(IC) analysis and LIBS analysis performed on mortars immersed in varying concentrations of chloride and sulfate. The findings revealed that at the wavelengths specific to Chloride(837.59nm) and Sulfur(921.30nm), the LIBS intensity achieved using AEM surpassed that obtained with a paper substrate at equivalent penetration concentrations. A robust correlation was confirmed between LIBS intensity and chloride ion concentration. Furthermore, when juxtaposed with IC analysis concentration outcomes at identical depths, the AEM displayed a higher intensity. The research noted an enhancement in LIBS intensity and a diminution in errors within the low-concentration section when deploying AEM. However, for the Sulfur wavelength of 921.3nm, there remains a need to augment the sensitivity of the LIBS signal within the low-concentration section in future studies. The findings underscore the potential of employing AEM and LIBS for precise analysis of chloride and sulfate ion penetration into mortar sections. This strategy can aid in bolstering assessment precision and mitigating errors, particularly in regions with low concentrations. It is recommended to further research and develop methods to amplify the sensitivity of the LIBS signal for sulfur detection in low-concentration sections. In sum, the study accentuates the significance of employing advanced techniques like AEM and LIBS for efficacious and precise analysis in the domain of mortar section assessment.

Transport of Organic Acids through Porous Sulfonated Polystyrene Divinylbenzene Copolymer Membranes (다공성 술폰화 폴리스티렌-디비닐벤젠 공중합체 분리막을 통한 유기산의 이동)

  • 이광재;한정우;조영일
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 1991
  • Sulfonated polystyrene-divinylbenzene(PS-DVB) copolymer membranes were prepared using different diluents (toluene, cyclohexane, cyclohexanol), various diluent ratio and DVB contents. And initial fluxes of organic acids were investigated by varying pH and initial concentration. As a results, water content and ion-exchange capacity decreased with increasing DVB concetration. Among used diluents, cyclohexanol was the most efficient for building up the highest water content and ion-exchange capacity. In the experiment of permeation, carboxylic acid such as formic acid and acetic acid showed higher fluxes when pH was lower than pKa and amino add such as L-alanine showed minimum flux when pH was isoelectric value. The relationaship between initial fluxes and initial concentrations has been expressed by saturation kinetics.

  • PDF

Preparation of Sulfonated PolySEBS/PS Blending Films (술폰화된 PolySEBS/PS Blending 필름의 제조)

  • Jang, Suk-Yong;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.205-208
    • /
    • 2008
  • Sulfonated polySEBS and sulfonated PS were synthesized by sulfonation at the aromatic group of polySEBS and PS. Novel sulfonated polySEBS/sulfonated PS blending films for the ion exchange membrane of polymer electrolyte fuel cell were prepared from these sulfonated polymers. The proton conductivities of these blending films were varied in $10^{-2}{\sim}10^{-3}S/cm$ with the blending ratio of sulfonated polySEBS/sulfonated PS. Especially, the film prepared from the addition of the sulfonated PS (0.5 g) in the sulfonated polySEBS (10.0 g) has the best proton conductivity (0.07 S/cm) with ion exchange capacity (0.75 meq/g) and water uptake (25%).

Removal Process of Metallic Impurity for Silicon Surface Detergent by Ion Exchange (실리콘 표면처리에 있어서 이온교환 막에 의한 금속불순물의 제거공정)

  • Yeon, Young-Heum;Choi, Seung-Ok;Jeong, Hwan-Kyung;Nam, Ki-Dea
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 1999
  • HF purification performance of an ion exchange membrane(IEM) was evaluated with 0.5% HF spiked with 10ppb of Fe, Ni and Cu nitrates. The result show that after less than five turnovers through an IEM, the metallic impurity concentration drops below 1ppb. The decrease rate can be fitted to a model assuming the experimental tanks to be continuously stirred tank reaction and that the metallic impurity concentration after the IEM is a function of the single-pass purification efficiency of the membrane, the concentration before purification and the metals desorbed form the IEM. The Concentration after purification was investigated up to a cumulative Fe loading of 300ppb in the 23 liter recirculated loop. It increases linearly vs. cumulative loading and can be explained by the Langmuir theory resulting in a purification efficiency at the equilibrium of close to 99.5% in this loading regime.

The Preparation and its Properties of Heterogeneous Anion Exchange Membrane from Polyethylene Matrix with 4-Vinylpyridine-divinylbenzene (폴리에틸렌을 지지체로한 4-Vinylpyridine-divinylbenzene 불균질계 음이온교환막의 제조 및 그의 특성에 관한 연구)

  • Hwang, Taek-Sung;Choi, Jang-Rak
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1061-1066
    • /
    • 1998
  • The synthesises of anion exchange resin from 4vinylpyridine-divinyIbenzene(4-VP-DVB) were intented to separate boron ion. The heterogeneous anion exchange membranes were prepared with polyethylene(PE) matrix bythe hot press method. The prepared exchange membranes were characterized by FT-IR, conductormeter and pH meter to confirm structural, mechanical and electrochemical properties. Their capacities were measured by changing floe rate and voltage. The best seperation capacity was appeared in the heterogeneous membrane which contains 50 wt % 4-VP-DVB resin within PE matrix. The heterogeneous membranes treated with acid were better than that treated with water. Results from this experiment were indicated that the optimal flow rate, voltage. and time in the seperation of boron ion were lOml/min, 18volts, and 4 hours respectively.

  • PDF

Preparation of Anion-exchange Membrane for Selective Separation of Urea and Ion (요소(Urea) 및 이온의 선택적 분리를 위한 음이온교환막의 제조)

  • Kim, Byoung-Sik;Kim, Min;Heo, Kwang-Beom;Hong, Joo-Hee;Na, Won-Jae;Kim, Jae-Hun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.303-309
    • /
    • 2006
  • In this study, functional anion-exchange membranes have been prepared and characterized to improve the permeation fluxes of the anion and urea for peritoneum dialysis. They were prepared by UV and radiation graft polymerization methods. The separation-membrane prepared by UV graft polymerization showed the highest grafting degree when HEMA and VBTAC were mixed by 1:2 ratio. However, the grafting degree decreased slightly at compositions above the 1:2 ratio because of the disruption of UV penetration caused by build-up of homopolymer. In the case of photo-initiator, the grafting degree increased up to 0.2 wt%, above which it decreased to a small extent. For the two membranes prepared by radiation graft polymerization, the VBTAC/HEMA membrane showed 96% grafting degree for 6 h reaction time and the GMA membrane showed over 100% grafting degree for 2 h reaction time. Anion-exchange membranes were prepared with 113% grafting degree and with DEA and TEA exchange groups. The DEA membrane showed the conversion degree of 70% in 4 h reaction time while the TEA membrane showed 30% in 2 h reaction time. The prepared anion-exchange membranes were permeable to only anions and urea, but not cations.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Preparation and Characterization of Partially Fluorinated Poly (arylene ether sulfone)/PTFE Composite Membranes for Fuel Cell (연료전지용 부분불소계 Poly (arylene e ther sulfone)/PTFE 복합막의 제조 및 특성 분석)

  • Kim, Eun Hee;Chang, Bong-Jun;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • New composite membranes were manufactured by impregnating post-sulfonated poly(arylene ether sulfone)s containing perfluorocyclobutane (PFCB) groups into porous polytetrafluoroethylene (PTFE) films. Two kinds of post-sulfonated poly(arylene ether sulfone)s with two different monomer ratios (sulfonable biphenylene monomer : non-sulfonable sulfonyl monomer = 6 : 4, 4 : 6) were first prepared through three synthetic steps: synthesis of trifluorovinylether-terminated monomers, thermal cycloaddition polymerization and post-sulfonation using chlorosulfonic acid (CSA). The composite membranes were then prepared by adjusting the concentrations (5~20 wt%) of the resulting copolymers impregnated in the PTFE films. The water uptake, ion exchange capacity (IEC) and ion conductivity of the composite membranes were characterized and compared with their unreinforced dense membranes and Nafion. All the synthesized compounds, monomers and polymers were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR and the composite membranes were observed with scanning electron micrographs (SEM).

Polymer Electrolyte Membranes of Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer for Fuel Cell (연료전지용 Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer의 고분자 전해질 분리막)

  • Garcia, Edwin D.;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.252-262
    • /
    • 2019
  • A sulfonated star branched poly(styrene-b-butadiene-b-styrene) triblock copolymer (SSBS) was synthesized with varying degrees of sulfonation. The effective sulfonation on the butadiene block was confirmed by FT-IR spectroscopy. Ion exchange capacity by titration was used to determine the degree of sulfonation. The synthesized polymer observed enhanced water uptake and proton conductivity. At room temperature, the SSBS with 25 mol% degree of sulfonation showed an outstanding proton conductivity of 0.114 S/cm, similar to that of commercial membrane, Nafion. The effect of temperature at constant relative humidity on conductivity resulted to a remarkable increase in proton conductivity. Methanol permeability studies showed a value lower than Nafion for all the sulfonated membranes. Structural nature observed using AFM showed that the membranes observed microphase separated nanostructures and the connectivity of the interionic channels.