• Title/Summary/Keyword: Ion exchange

Search Result 2,129, Processing Time 0.034 seconds

Characteristics of Selectivity in Anion Exchanges (음이온 선택도 특성)

  • 이석중;안현경;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.194-197
    • /
    • 2002
  • Ion exchange is a chemical reaction between the ions in solution phase and ions in solid phase and is widely used in softening, demineralization, removal and collection of specific ions, and ion migration in the ground water. The ion selectivity depends on the charge and the hydrated radius of ion. The objective of this study was to examine the applicability of anion selectivity obtained from the ion exchange equilibrium OH/sup -/ < F/sup -/ < HCO/sup -/ < Cl/sup -/ < Br/sup -/ ≤ NO₃/sup -/ < SO₄/sup 2-/ to the column ion exchange. The column ion exchange was facilitated in the lower charge of counter-ion in the background electrolyte.

  • PDF

The Discussion of Glass Waveguide formed by ton-exchange (이온교환 방법에 의한 유리도파로 특성 고찰)

  • 박정일;김봉재;박태성;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.130-132
    • /
    • 1994
  • We fabricated Ag ion exchange glass waveguide. Generally, ion-exchange glass waveguide. are suitable for passive integrated optical components such as directional and star couplers. Its advantages include low loss, ease of fabrication, and low material cost. So, we faricated Ag ion-exchange glass waveguides in AgNO$_3$ melt solution from 2 mole %. And we used Sodalime glass as a substrate in the fabrication process. As the results, we observed multivalent ion-exchange in a typical sodalime glass. Diffusion coefficient and depth are predicted by actual experimental data of Stewart. The exchange rate in silver-ion-exchanged waveguides are compared to the exchange time of waveguide fabrication.

  • PDF

Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin (오염된 물로부터 이온교환수지를 이용한 방사성이온 제거)

  • Shin, Do Hyoung;Ju, Ko Woon;Cheong, Seong Ihl;Rhim, Ji Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.633-638
    • /
    • 2016
  • In this study, we used three kinds of commercially available cation, anion, and mixed-ion exchange resins to separate radioactive ions from a polluted water containing Cs, I, and other radioactive ions. The experiment was conducted at a room temperature with a batch method, and a comparative analysis on the decontamination ability of each resin for the removal of Cs and I was performed by using different quantities of resins. The concentration was analyzed using ion chromatography and the ion exchange resin product from company D showed an overall high ion exchange ability. However, for most of the experiments when the amount of ion exchange resin was decreased, the decontamination ability of the resins against mass increased. When the mass of company D's cation exchange resin was small, the ion exchange ability against Cs and I ions were measured as 0.199 and 0.344 meq/g, respectively. When the mixed ion exchange resin was used, the ion exchange ability against I ions was measured as 0.33 meq/g. All in all, company D's ion exchange resins exhibited a relatively higher ion exchange ability particularly against I ions than that of other companies' exchange ions.

Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation (표면적이 증가된 분별침전에 의한 paclitaxel의 입자 크기 감소)

  • Lee, Ji-Yeon;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.157-162
    • /
    • 2012
  • In this study, we have for the first time applied increased surface area fractional precipitation in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no surface area increasing material was employed, the addition of ion exchange resin as a surface area increasing material resulted in a considerable decrease in the size of the paclitaxel precipitate. When ion exchange resin was used, the paclitaxel particles were four to five times smaller, having less than a 20 ${\mu}m$ radius, than those obtained in the absence of ion exchange resin. This is presumably because the growth of paclitaxel particles was impeded by the addition of ion exchange resin. The size of the paclitaxel precipitate also depended on the material used to increase the surface area, a result considered to be due to differences in the affinity between the particular ion exchange resin used and the paclitaxel particles. The yield of paclitaxel was significantly improved when ion exchange resin was used as a material to increase surface area. Paclitaxel, with a reduced particle size due to the addition of a surface area increasing material during the fractional precipitation process, is believed to be particularly useful for practical applications of the drug.

Degradation of Ion-exchange Soda-lime Glasses Due to a Thermal Treatment (이온강화 소다라임 유리의 열처리에 따른 강화 풀림현상)

  • Hwang, Jonghee;Lim, Tae-Young;Lee, Mi Jai;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.23-27
    • /
    • 2015
  • Recently, the use of ion-exchange strengthened glass has increased sharply, as it is now used as the cover glass for smart phone devices. Therefore, many researchers are focusing on methods that can be used to strengthen ion-exchange glass. However, research on how the improved strength can be maintained under thermal environment of device manufacturing is still insufficient. We tested the degradation of the characteristics of ion-exchange soda-lime glass samples, including their surface compressive stress characteristics, the depth of the ion-exchange layer (DOL), flexural strength, hardness, and modulus of rupture (MOR) values. Degradation of the characteristics of the ion-exchange glass samples occurred when they were heat-treated at a temperature that exceeded $350^{\circ}C$.

Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin (질산성질소에 파과된 이온교환수지의 생물학적 직접 재생)

  • Nam, Youn-Woo;Bae, Byung-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.

Preparation of Cation Exchange Membrane using Block Copolymer of Polysulfone and Poly(Phenylene Sulfide Sulfone) and its Electrochemical Characteristics (Polysulfone과 Poly(Phenylene Sulfide Sulfone)의 블록 공중합체를 이용한 양이온 교환막의 제조 및 전기화학적 특성)

  • 임희찬;강안수
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.66-74
    • /
    • 2000
  • In consideration that a high tensile strength and ion exchange capacity are maintained as the swelling of membrane is controlled by the coagulation of PSf with the introduction of ion exchange groups and PPSS without the introduction of ion exchange groups, the block copolymer of PSf and PPSS were synthesized. The cation exchange membrane was prepared by sulfonation with CSA and casted. The synthesized block copolymer and cation exchange membrane were characterized by FT-IR and their thermal stability was confirmed by TGA. The optimum sulfonation could be accomplished at a mole ratio of BPSf to CSA 1:3. The best electrochemical properties obtained by the optimal condition were area resistance of 4.37 $\Omega$$\textrm{cm}^2$, ion exchange capacity of 1.71 meq/g dry membrane, water content of 0.2941 g $H_2O$/g dry membrane, and fixed ion concentration of 5.81 meq/g $H_2O$. When GBL was used as an additive, area resistance was increased by 13.7 % and ion exchange capacity was increased by 14.6%. When the membrane was fabricated in a form of composite using non woven cloth as a support. the tensile strength of membrane could be improved, but the electrochemical characteristics were not influenced.

  • PDF

A Study on the Ion Exchange and th Chemical Stability of Na-fluor-tetrasilicic Mica by $H^+$ions (나트륨형불소 4 규소운모의 $H^+$ 이온교환 및 화학적인 안정성에 관한 연구)

  • 송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.35-39
    • /
    • 1985
  • Synthetic mica $NaMg_{2.5}(Si_4O_{10})F_2 (Na-TSM)$ was treated with HCl solution and H-type exchange resin to investigate the chemical stability and the ion exchange by measuring the dissolution of chemical components and the exchanged $H^+$ ion. The replacement of $Na^+$ ion occurred in contact with HCl solution and H-type ion exchange resin at the surface of Na-TSM particles reached $Na^+$ ions at maximum value of 70~80%. $Mg^{2+}$ ion of octahedral layer became to dissolve from the pH2 solution and th amount of it dissolved in-creased almost proportional to $H^+$ ion concentration from around 0.02N $H^+$ ion equilibrium concentration. The crystalline structure of Na-TSM was destructed by dissolution of Mg2+ ion in cncentrated hydrochloric acid solution and resulted silica gel precipitation.

  • PDF

A Study on Ion Exchange Characteristics with Composition and Concentration of Electrolyte, Ratio of Ion Exchange Resin (전해질 성분 및 농도, 이온교환 수지 비율에 따른 이온교환 특성 연구)

  • Ahn Hyun-Kyoung;Rhee In-Hyoung;Yoon Hyoung-Jun;Jeong Hyun-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.727-732
    • /
    • 2006
  • The object of this study was to investigate the influence of composition and concentration of electrolyte, ratio of cation to anion exchange resin of mixed ion exchange column in the performance of ion exchange. Also this work examined the removal capability of suspended solids by ion exchange resin and the effect of particule on the characteristics of ion exchange. Breakthrough time was extended as the amount of ions and particles present in liquid was decreased. The case of anion, the breakthrough sequence is $Cl^{-}, but the case of cation, the breakthrough sequence is $Na^{+}. As for the ratio of cation to anion exchange resin of 1:2, the breakthrough time was prolonged compared with that of 1:1 and 1:3. For the electrolyte of equal concentration containing suspended solid, breakthrough time was contracted less than 20%. It results in the increase in the removal capacity of cation exchange resin. For the higher ratio of cation exchange resin, suspended solids are shorten the cation's breakthrough time so that the runtime of ion exchange resin tower is increased.

  • PDF

An Experimental Study on the Compressive Strength and Chloride ion penetration resistance of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도 및 염소이온 침투 저항성에 관한 실험적 연구)

  • Jung, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.23-24
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Also, reinforced concrete structures in high salinity environments have low durability due to corrosion of reinforcing bars due to infiltrated chlorine ions. Anion exchange resins have an ability to immobilize chlorine ions in the resin while releasing their anions. As a material, it has already been shown that it is possible to fix the chloride ion inside the cementitious material through the cement mortar experiment. The purpose of this study is to confirm the compressive strength of cement mortar using powdered anion exchange resin after powdering an anion exchange resin. In order to confirm the chloride ion fixation ability of the powder anion exchange resin, chlorine ion penetration resistance test was carried out.

  • PDF