• 제목/요약/키워드: Ion exchange

검색결과 2,130건 처리시간 0.032초

휴폐광산의 중금속제어를 위한 융합공정 개발 (Convergence Process for the Removal of Heavy Metals in the Abandoned Mine)

  • 도현승
    • 한국융합학회논문지
    • /
    • 제7권1호
    • /
    • pp.155-160
    • /
    • 2016
  • 청양지역 폐광산의 오염원인인 중금속의 제거를 침출과 이온교환법을 활용한 융합공정을 통해 실험하였으며 중금속에 오염된 토양시료는 통계처리를 하여 분석하였다. 오염토양은 일차로 부선처리법으로 분리하였으며, 사용시약이 증가할수록 선별지수는 증가하였다. 중금속을 제거하기 위한 침출과 이온분리법에 의해 선별도는 더 향상이 되었다. 침출속도는 황산용액이 증가할수록 증가되었으며, 침출용액은 이온교환법에 의해 상당부분 제거가 되었다. 침출과 이온교환법이 결합된 연속융합공정을 개발하여 중금속 제거 실험을 하였으며, 향후 개선을 통해 중금속의 제거효과가 향상될 것이며, 이를 통해 폐광산의 오염토양에 적용 가능함을 알 수 있었다.

바나듐계 레독스 흐름 전지용 고분자 이온교환막의 연구개발 동향 (Research Trend of Polymeric Ion-Exchange Membrane for Vanadium Redox Flow Battery)

  • 김득주;남상용
    • 멤브레인
    • /
    • 제22권5호
    • /
    • pp.285-300
    • /
    • 2012
  • 바나듐 흐름전지는 오랜 사이클 수명, 높은 에너지효율, 낮은 제조단가 그리고 친환경성으로 인하여 에너지저장장치의 한 부분이 될 것으로 기대되고 있다. 바나듐 흐름전지 시스템의 핵심 부품의 하나로서 이온교환막은 이온이 계속적으로 전달되는 동안 양극과 음극 전해질의 투과를 저해하는 물성이 요구된다. 그러나 Nafion과 같은 이온교환막은 넓은 시장성의 확보를 위한 목표성능의 달성을 위한 몇가지 과제들에 직면하고 있다. 그러므로 이러한 문제들을 해결하기 위하여 최근까지 개발된 여러가지 이온교환막에 대하여 Nafion과 비교하여 바나듐 흐름전지특성에 대하여 조사하였다.

Corrosion Protection from Inhibitors and Inhibitor Combinations Delivered by Synthetic Ion Exchange Compound Pigments in Organic Coatings

  • Chrisanti, S.;Ralston, K.A.;Buchheit, R.G.
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.212-218
    • /
    • 2008
  • Inorganic ion exchange compounds (IECs) including hydrotalcites and bentonite clays are a well known classes of layered mixed metal hydroxides or silicates that demonstrate ion exchange properties. These compounds have a range of applications from water purification to catalyst supports. The use of synthetic versions of these compounds as environmentally friendly additives to paints for storage and release of inhibitors is a new and emerging application. In this paper, the general concept of storage and release of inhibiting ions from IEC-based particulate pigments added to organic coatings is presented. The unique aspects of the IEC structure and the ion exchange phenomenon that form the basis of the storage and release characteristic are illustrated in two examples comprising an anion exchanging hydrotalcite compound and a cation exchanging bentonite compound. Examples of the levels of corrosion protection imparted by use of these types of pigments in organic coatings applied to aluminum alloy substrates is shown. How corrosion inhibition translates to corrosion protection during accelerated exposure testing by organic coatings containing these compounds is also presented.

NON DESTRUCTIVE APPLICATION OF RADIOACTIVE TRACER TECHNIQUE FOR CHARACTERIZATION OF INDUSTRIAL GRADE ANION EXCHANGE RESINS INDION GS-300 AND INDION-860

  • Singare, P.U.
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.93-100
    • /
    • 2014
  • The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, $^{131}I$ and $^{82}Br$ were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate ($min^{-1}$), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log $K_d$ were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of $40.0^{\circ}C$, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

Bioelectricity Generation Using a Crosslinked Poly(vinyl alcohol) (PVA) and Chitosan (CS) Ion Exchange Membrane in Microbial Fuel Cell

  • Badillo-Cardoso Jonathan;Minsoo Kim;Jung Rae Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.303-310
    • /
    • 2023
  • Microbial fuel cells (MFCs) are a bioelectrochemical system where electrochemically active bacteria convert organic waste into electricity. Poly(vinyl alcohol) (PVA) and chitosan (CS) are polymers that have been studied as potential alternative ion exchange membranes to Nafion for many electrochemical systems. This study examined the optimal mixing ratio of PVA and chitosan CS in a PVA:CS composite membrane for MFC applications. PVA:CS composite membranes with 1:1, 2:1, and 3:1 ratios were synthesized and tested. The water uptake and ion exchange capacity, Fourier transform infrared spectra, and scanning electron microscopy images were analyzed to determine the physicochemical properties of PVA:CS membranes. The prepared membranes were applied to the ion exchange membrane of the MFC system, and their effects on the electrochemical performance were evaluated. These results showed that the composite membrane with a 3:1 (PVA:CS) ratio showed comparable performance to the commercialized Nafion membrane and produced more electricity than the other synthesized membranes. The PVA:CS membrane implemented MFCs produced a maximum power density of 0.026 mW cm-2 from organic waste with stable performance. Therefore, it can be applied to a cost-effective MFC system.

Preparation of Cation-exchange Resin from Lignin

  • Kamelt S.
    • 펄프종이기술
    • /
    • 제36권5호
    • /
    • pp.78-84
    • /
    • 2004
  • Lignin precipitated from black liquor of soda pulping of bagasse was used to prepare cation-exchange resin. The effect of sulfuric acid treatment, concentration of phenol and formaldehyde on the properties of the prepared cation-exchange resin was investigated. It was found that sulfonated resinified phenolated lignin gave a resin with an ion-exchange capacity higher than that of resin, which resulted from sulfonation of resinified lignin at zero phenol concentration. Infrared spectroscopy of the prepared ion-exchange resin shows anew bands at 1060, 1160, 1280 and $1330\;cm^{-1}$ which indicated to the presence of $SO_{3}$.

Iminodiacetic Acid 이온 교환수지를 사용한 Ligand Exchange 에 대한 연구 (Ligand Exchange Studies with an Iminodiacetic Acid Ion Exchange Resin)

  • 박종민
    • 대한화학회지
    • /
    • 제11권2호
    • /
    • pp.56-59
    • /
    • 1967
  • Ligand Exchange를 원리로 하여 Nickel Ion을 포함하고 있는 Chelating Resin인 dowex A-1을 써서 Elution Chromatography에 의하여 Amine의 혼합물을 분리하는 방법을 기술하였다. 이 실험에서 암모니아 수용액을 Eluent로 썼다. 이 방법은 특히 방향족아민의 분리에 효과 있음을 알게 되었다.

  • PDF

$\beta$-아밀라아제의 정제에 관한 연구 (Purification of Soybean $\beta$-Amylase)

  • 안용근
    • 한국식품영양학회지
    • /
    • 제7권1호
    • /
    • pp.23-28
    • /
    • 1994
  • Soybean $\beta$-amylase was purified by DEAE-cellulose ion exchange chromatography, Sephadex G-100 gel chromatography, CM Sephadex C-50 ion exchange chromatography and CM Sephadex C-50 ion exchange rechromatography The purified enzyme showed 1, 020 unit/mg of specific activity. The purified enzyme was identified as homogenious by disc PAGE and analysis of reaction product.

  • PDF

산화물유리에서의 $Na^+$이온과 $Ag^+$이온 교환에 따른 전기전도도 변화 (Electrical conductivity in oxide glasses subjected to $sodium \leftrightarrow silver$ ion exchange treatment)

  • 한준수;강원호;이효경
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권3호
    • /
    • pp.284-290
    • /
    • 1996
  • The electrical properties of bulk galsses in the system Na$_{2}$O-CaO-Al$_{2}$O$_{3}$-B$_{2}$O$_{3}$-SiO$_{2}$ containing 20 to 30mol% sodium which have been subjected to a sodium .tautm. silver ion exchange reaction for 24, 36 and 48 hrs. were analysed by impedance spectroscopy method. Ion exchanged glasses exhibit activation energy values lower than those of the untreated ones. The electrical conductivity increase with sodium content and ion exchanging time. In this experiment the electrical conductivity exhibits a manximum value of 1.78*10$^{-4}$ S/cm at 200.deg. C which contains 30mol% sodium and subjects ion exchange reaction for 48hrs.

  • PDF