DOI QR코드

DOI QR Code

NON DESTRUCTIVE APPLICATION OF RADIOACTIVE TRACER TECHNIQUE FOR CHARACTERIZATION OF INDUSTRIAL GRADE ANION EXCHANGE RESINS INDION GS-300 AND INDION-860

  • Singare, P.U. (Department of Chemistry, Bhavan's College)
  • Received : 2013.06.11
  • Accepted : 2013.09.11
  • Published : 2014.02.25

Abstract

The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, $^{131}I$ and $^{82}Br$ were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate ($min^{-1}$), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log $K_d$ were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of $40.0^{\circ}C$, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

Keywords

References

  1. Fundamental Safety Principles, IAEA Safety Standards Series No. Sf-1, International Atomic Energy Agency, Vienna (2006).
  2. Handling and Processing of Radioactive Waste from Nuclear Applications, Technical Reports Series No. 402, International Atomic Energy Agency, Vienna (2001).
  3. Management of low and intermediate level radioactive wastes with regard to their chemical toxicity, IAEA-TECDOC-1325, International Atomic Energy Agency, Vienna (2002).
  4. Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers, Technical Reports Series No. 408, International Atomic Energy Agency, Vienna (2002).
  5. Samanta, S.K., Ramaswamy, M., Misra, B.M., Studies on cesium uptake by phenolic resins, Sep. Sci.Technol. 27, 255-267 (1992). https://doi.org/10.1080/01496399208018877
  6. Samanta, S.K., Ramaswamy, M., Sen, P., Varadarajan, N., Singh, R.K., Removal of radiocesium from alkaline IL waste, Natl Symp. On Management of Radioactive and Toxic Wastes (SMART-93), Kalpakkam, 1993, Bhabha Atomic Research Centre, Bombay 56-58 (1993).
  7. Samanta, S.K., Theyyunni, T.K., Misra, B.M., Column behavior of a resorcinol-formaldehyde polycondensate resin for radiocesium removal from simulated solution, J. Nucl. Sci. Technol. 32, 425-429 (1995). https://doi.org/10.1080/18811248.1995.9731727
  8. Kulkarni, Y., Samanta, S.K., Bakre, S.Y., Raj, K., Kumra, M.S., Process for treatment of intermediate level radioactive waste based on radionuclide separation, Waste Management' 96 (Proc. Int. Symp Tucson,AZ, 1996), Arizona Board of Regents, Phoenix, AZ (1996) (CD-ROM).
  9. Bray, L.A., Elovich, R.J., Carson, K.J., Cesium Recovery using Savannah River Laboratory Resorcinol-formaldehyde Ion Exchange Resin, Rep. PNL- 7273, Pacific Northwest Lab., Richland, WA (1990).
  10. Singare, P.U., Lokhande, R.S., Madyal, R.S., Thermal Degradation Studies of Some Strongly Acidic Cation Exchange Resins, Open Journal of Physical Chemistry, 1(2), 45-54 (2011). https://doi.org/10.4236/ojpc.2011.12007
  11. Singare, P.U., Lokhande, R.S., Madyal, R.S., Thermal Degradation Studies of Polystyrene Sulfonic and Polyacrylic Carboxylic Cationites, Rus. J. Gen. Chem., 80(3), 527-532 (2010). https://doi.org/10.1134/S1070363210030266
  12. Tomoi, M., Yamaguchi, K., Ando, R., Kantake, Y., Aosaki, Y., Kubota, H., Synthesis and thermal stability of novel anion exchange resins with spacer chains, J. Appl.Poly. Sci., 64(6), 1161 - 1167 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1161::AID-APP16>3.0.CO;2-Z
  13. Zhu, L., Liu, Y., Chen, J., Synthesis of N-Methylimidazolium Functionalized Strongly Basic Anion Exchange Resins for Adsorption of Cr(VI), Ind. Eng. Chem. Res., 48 (7), 326-3267 (2009). https://doi.org/10.1021/ie8007192
  14. Kumaresan, R., Sabharwal, K. N., Srinivasan, T. G., Vasudeva Rao, P. R., Dhekane, G., Evaluation of New Anion Exchange Resins for Plutonium Processing, Solvent Extraction and Ion Exchange, 24(4), 589 - 602 (2006). https://doi.org/10.1080/07366290600762512
  15. Cortina, J. L., Warshawsky, A., Kahana, N., Kampel, V., Sampaio, C. H., Kautzman, R.M., Kinetics of goldcyanide extraction using ion-exchange resins containing piperazine functionality, Reactive and Functional Polymers, 54(1-3), 25-35 (2003). https://doi.org/10.1016/S1381-5148(02)00180-3
  16. de Villiers, J.P., Parrish, J.R., Rapid characterization of ion-exchange resins by NMR, Journal of Polymer Science Part A: General Papers, 2(3), 1331-1340 (1964). https://doi.org/10.1002/pol.1964.100020330
  17. Harland, C.E., Ion Exchange, DOI: 10.1039/9781847551184-00049 , ISBN: 978-0-85186-484-6, eISBN: 978-1-84755-118-4, 2nd Edition, RSC Publishing, UK, pp.49-89, (1994).
  18. Zeng, X., Murray, G.M., Synthesis and Characterization of Site-Selective Ion-Exchange Resins Templated for Lead (II) Ion, Separation Science and Technology, 31(17), 2403-2418 (1996). https://doi.org/10.1080/01496399608001056
  19. Patel, S.A., Shah, B.S., Patel, R.M., Patel, P.M., Synthesis, Characterization and Ion exchange Properties of Acrylic Copolymers Derived from 8-Quinolinyl Methacrylate, Iranian Polymer Journal, 13(6), 445-453 (2004).
  20. Liu, H., Zhang, S., Nie, S., Zhao, X., Sun, X., Yang, X., Pan, W., Preparation and characterization of a novel pHsensitive ion exchange resin, Chem. Pharm. Bull. (Tokyo), 53(6), 631-633 (2005). https://doi.org/10.1248/cpb.53.631
  21. Masram, D.T., Kariya, K.P., Bhave, N.S., A Novel Resin Sef: Synthesis, Characterization and Ion-Exchange Properties, Applied Science Segment: 1(1) APS/1513 (2010).
  22. Sood, D.D., Reddy, A.V.R., Ramamoorthy, N., Applications of Radioisotopes in Agriculture and Industry, in Fundamentals of Radiochemistry, Indian Association of Nuclear Chemists and Allied Scientists (IANCAS), pp.289-297, January 2004.
  23. Radiotracer Applications in Industry - A Guidebook, Technical Reports Series No.423, IAEA, Vienna (2004).
  24. Clark, M.W., Harrison, J.J., Payne, T.E., The pH-dependence and reversibility of uranium and thorium binding on a modified bauxite refinery residue using isotopic exchange techniques, Journal of Colloid and Interface Science, 356(2), 699-705 (2011). https://doi.org/10.1016/j.jcis.2011.01.068
  25. Dagadu, C.P.K., Akaho, E.H.K., Danso, K.A., Stegowski, Z., Furman, L., Radiotracer investigation in gold leaching tanks, Applied Radiation and Isotopes, 70(1), 156-161(2012). https://doi.org/10.1016/j.apradiso.2011.09.003
  26. Koron, N., Bratkic, A., Ribeiro Guevara, S., Vahcic, M., Horvat, M., Mercury methylation and reduction potentials in marine water: An improved methodology using 197Hg radiotracer, Applied Radiation and Isotopes, 70(1), 46-50 (2012). https://doi.org/10.1016/j.apradiso.2011.07.015
  27. Singare, P.U., Lokhande, R.S., Studies on Ion-Isotopic Exchange Reactions Using Nuclear Grade Ion Exchange Resins, Ionics, 18(4), 351-357 (2012). https://doi.org/10.1007/s11581-011-0645-0
  28. Lokhande, R.S., Singare, P.U., Comparative Study on Ion- Isotopic Exchange Reaction Kinetics by Application of Tracer Technique, Radiochim. Acta, 95(03), 173-176 (2007).
  29. Lokhande, R.S., Singare, P.U., Patil, V.V., Application of Radioactive Tracer Technique to Study the Kinetics and Mechanism of Reversible Ion-Isotopic Exchange Reaction using Strongly Basic Anion Exchange Resin Indion -850, Radiochemistry, 50(06), 638-641 (2008). https://doi.org/10.1134/S1066362208060106
  30. Lokhande, R.S., Singare, P.U., Comparative Study on Iodide and Bromide Ion-Isotopic Exchange Reactions by Application of Radioactive Tracer Technique, J.Porous Mater, 15(03), 253-258 (2008). https://doi.org/10.1007/s10934-006-9077-z
  31. Lokhande, R. S., Singare, P. U., Dole, M. H., Comparative Study on Bromide and Iodide Ion-Isotopic Exchange Reactions Using Strongly Basic Anion Exchange Resin Duolite A-113, J. Nuclear and Radiochemical Sciences, 7(02), 29-32 (2006). https://doi.org/10.14494/jnrs2000.7.2_29
  32. Heumann, K.G., Baier, K., Chloride distribution coefficient on strongly basic anion-exchange resin: Dependence on co-ion in alkali fluoride solutions, Chromatographia, 15(11), 701-703 (1982). https://doi.org/10.1007/BF02261888
  33. Singare, P.U., Lokhande, R.S., Patil, V.V., Prabhavalkar, T. S., Tiwari, S. R. D., Study on Distribution coefficient of Bromide ions from Aqueous Solution on Ion Exchange Resins Indion-850, Indion-860 and Indion FF-IP, European J. Chemistry, 1(1), 47-49 (2010). https://doi.org/10.5155/eurjchem.1.1.47-49.7
  34. Adachi, S., Mizuno, T., Matsuno, R., Concentration dependence of the distribution Coefficient of malto oligosaccharides on a cation-exchange resin, J. Chromatogr. A, 708, 177-183 (1995). https://doi.org/10.1016/0021-9673(95)00405-C
  35. Shuji, A., Takcshi, M., Ryuichi, M., Temperature Dependence of the Distribution Coefficient of Maltooligosaccharides on Cation-exchange Resin in $Na^+$ Form, Biosci. Biotechnol. Biochem., 60(2), 338-340 (1996). https://doi.org/10.1271/bbb.60.338