• Title/Summary/Keyword: Ion concentration and type

Search Result 287, Processing Time 0.036 seconds

Comparative Study on Recovery of Nickel by Ion Exchange and Electrodialysis (이온교환과 전기투석을 이용한 니켈회수의 비교연구)

  • Sim, Joo-Hyun;Seo, Hyung-Joon;Seo, Jae-Hee;Kim, Dae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.640-647
    • /
    • 2006
  • It is difficult to treat wastewater involved in heavy metal in electroplating industry. Recently, many industries adopt the clean technology to prevent production of pollutant in the process or reuse after the appropriate pollutant treatment. In this study, we estimate the ability of recovery of nickel and the efficiency using lab-scale ion exchange and electrodialysis process with electroplating industry wastewater. In the ion exchange experiments with 5 types of resin, the result showed that S 1467(gel-type strong acidic cation exchange resin) has the highest exchange capacity. And it showed that the 4 N HCl has the highest in regeneration efficiency and maximum concentration in the regeneration experiments with various kinds md concentration of the regenerant. During the electrodialysis experiments, we varied the current density, the concentration of electrode rinse solution, the flow rate of concentrate and electrode rinse solution in order to find the optimum operating condition. As a result, we obtained $250A/m^2$ of current density, 2 N $H_2SO_4$ of concentration of electrode rinse solution, 30 mL/min of flow rate of concentrate and electrode rinse solution as the best operating conditions. We performed the scale-up experiments on the basis of ion exchange and electrodialysis experiments. And we obtained the experimental result that exchange capacity of S 1467 was 1.88 eq/L resin, and regeneration efficiency was 93.7% in the ion exchange scale-up experiment, we also got the result that concentration and dilution efficiency increased, and current efficiency kept constant in the scale-up experiments.

A High Efficiency Electrolytic Cell by Superposing Pulsed Corona Discharge in Water (수중 펄스코로나 방전을 중첩한 고효율 강전해수 발생장치)

  • 이재용;김진규;정성진;박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • A conventional electrolyzing cell has been made by an ion exchange membrane inbetween parallel plate electrodes. A low dc voltage is applied to the electrodes for electrolyzing and the efficiency is remained in low. in this study, a novel electrolyzing cell with a pair of slit-type third electrodes installed inbetween parallel plate electrodes has been proposed and investigated experimentally. And pulse power wa supplied to between each electrodes. This slit type of third electrodes can concentrate the strong electric fields at the every its edges to accelerate the electrolyzing powers, and to generate oxygen bubble discharges for generating oxidants. And moreover the slits eliminate the space charge limiting action and the temperature of the water by leaking out through the slits from electrolyzing region to outside of the main electrode region. As a result, it was found that a strong electorzed water of pH 2.8 and pH 10.5 and oxidants dissolved water of 1 [ppm] in acidic water were obtained with a tap water fed at the electric current of 2 [A], which however were several times higher oxidant and ion concentration quantity compared with the conventional cell.

  • PDF

Formation of Ohmic Contacts on acceptor ion implanted 4H-SiC (이온 이온주입한 p-type 4H-SiC에의 오믹 접촉 형성)

  • Bahng, W.;Song, G.H.;Kim, H.W.;Seo, K.S.;Kim, S.C.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • Ohmic contact characteristics of Al ion implanted n-type SiC wafer were investigated. Al ions implanted with high dose to obtain the final concentration of $5{\times}10^{19}/cm^3$, then annealed at high temperature. Firstly, B ion ion implanted p-well region were formed which is needed for fabrication of SiC devices such as DIMOSFET and un diode. Secondly, Al implanted high dose region for ohmic contact were formed. After ion implantation, the samples were annealed at high temperature up to $1600^{\circ}C\;and\;1700^{\circ}C$ for 30 min in order to activate the implanted ions electrically. Both the inear TLM and circular TLM method were used for characterization. Ni/Ti metal layer was used for contact metal which is widely used in fabrication of ohmic contacts for n-type SiC. The metal layer was deposited by using RF sputtering and rapid thermal annealed at $950^{\circ}C$ for 90sec. Good ohmic contact characteristics could be obtained regardless of measuring methods. The measured specific contact resistivity for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$ were $1.8{\times}10^{-3}{\Omega}cm^2$, $5.6{\times}10^{-5}{\Omega}cm^2$, respectively. Using the same metal and same process of the ohmic contacts in n-type SiC, it is found possible to make a good ohmic contacts to p-type SiC. It is very helpful for fabricating a integrated SiC devices. In addition, we obtained that the ratio of the electrically activated ions to the implanted Al ions were 10% and 60% for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$, respectively.

  • PDF

Behavior Characteristics of Fluoride with pH, Ion Type and Concentration, and Sediment Characteristics in River (pH, 이온종류 및 농도, 퇴적물의 성분에 따른 하천 내 불소의 거동특성)

  • LEE, Dong Min;Joo, Kwang Jin;Choi, ISong;Chang, Kwang Hyeon;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Water quality is affected by the pollutants flowing into rivers since the interaction between water bodies and sediments in various environmental conditions. Especially, accumulation of sediments increases in the stagnant water areas due to a relative long hydrological retention time in the water bodies. Therefore, it is an important factor of water quality to understand characterization of the material behavior in water bodies and sediments. In this study, the objective of the conditional experiments was small and medium sized streams located in Gyeonggi-do. To estimate how the changes of fluoride behavior, depending on the pH, ion type, concentration, and clay contents. The pH results showed a trend that adsorption amount of fluorine decreased and the dissolution of fluorine increased following by pH increasing. The concentration and type of ions results showed that $Cl^-$ and $SO{_4}^{2-}$ ions had no significant effect on the adsorption ability of fluorine, the amount of dissolution was increased because $OH^-$ ion had active competition with fluorine in the reaction. The ingredient of sediment results showed that the amounts of fluoride adsorption and dissolution were reduced in samples, which contain relatively large amounts of Silt and Clay components. This means that the environmental conditions of water bodies greatly affect the adsorption and dissolution of fluoride in the sediments, so that proper management of fluoride in the sediments must precede an understanding of the environmental conditions of the water bodies.

Determination of optimal ion implantation conditions to prevent double snapback of high voltage operating DDDNMOS device for ESD protection (고전압 정전기 보호용 DDDNMOS 소자의 더블 스냅백 방지를 위한 최적의 이온주입 조건 결정)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • Process and device simulations were performed to determine the optimal ion implantation conditions to prevent double snapback of high voltage operating DDDNMOS (double diffused drain N-type MOSFET) device for ESD protection. By examining the effects of HP-Well, N- drift and N+ drain ion implantation on the double snapback and avalanche breakdown voltages, it was possible to prevent double snapback and improve the electrostatic protection performance. If the ion implantation concentration of the N- drift region rather than the HP-Well region is optimally designed, it prevents the transition from the primary on-state to the secondary on-state, so that relatively good ESD protection performance can be obtained. Since the concentration of the N- drift region affects the leakage current and the avalanche breakdown voltage, in the case of a process technology with an operating voltage greater than 30V, a new structure such as DPS or colligation of optimal process conditions can be applied. In this case, improved ESD protection performance can be realized.

Reverse annealing of boron doped polycrystalline silicon

  • Hong, Won-Eui;Ro, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.140-140
    • /
    • 2010
  • Non-mass analyzed ion shower doping (ISD) technique with a bucket-type ion source or mass-analyzed ion implantation with a ribbon beam-type has been used for source/drain doping, for LDD (lightly-doped-drain) formation, and for channel doping in fabrication of low-temperature poly-Si thin-film transistors (LTPS-TFT's). We reported an abnormal activation behavior in boron doped poly-Si where reverse annealing, the loss of electrically active boron concentration, was found in the temperature ranges between $400^{\circ}C$ and $650^{\circ}C$ using isochronal furnace annealing. We also reported reverse annealing behavior of sequential lateral solidification (SLS) poly-Si using isothermal rapid thermal annealing (RTA). We report here the importance of implantation conditions on the dopant activation. Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF

Development of an Immobilized Adsorbent for in situ Removal of Ammonium Ion from Mammalian Cell Culture Media and its Application to a Mammalian Cell Bioreactor: I. Development of Immobilized Adsorbent System (동물세포 배양액으로부터 암모늄 이온의 동시제거를 위한 고정화 흡착제의 개발과 동물세포 배양 시스템에의 응용: I. 고정화 흡착시스템 개발)

  • 박병곤;민용원;전계택;김익환;정연호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.404-410
    • /
    • 1998
  • Three types of adsorbents were developed by immobilizing synthetic zeolite, Philipsite-Gismonine, in alginate, cellulose acetate and dialysis membrane for the in situ removal of ammonium ion which inhibits growth and productivity of animal cells such as CHO cells producing tPA. Ammonium ion removal efficiency and cell growth promoting effect with various immobilized adsorbents were evaluated and the membrane type was selected as an optimal immobilized adsorbent. The experiments were then simulated by adding 8mM ammonium chloride and immobilized adsorbent in order to validate the removal effect under high density cell cultures. The results showed increase in maximum cell density by three times, in cell viability, and in tPA productivity by 40%. And it was found that the promoting effects were more significant in case of high ammonium ion concentration system. It was also found that the optimum addition time for immobilized adsorbents was 48 hr in the absence of ammonium chloride addition and 72 hr in the presence of ammonium chloride addition.

  • PDF

Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels (두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.

Improvement of reliability of an ISFET pH-meter by employing multiple sensors

  • Chang, Kee-Seok;Cho, Byung-Woog;Kim, Chang-Soo;Choi, Sang-Bok;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.131-136
    • /
    • 1997
  • The ISFET(ion sensitive field effect transistor), a semiconductor ion sensor, has many advantages over conventional ion sensors. Various single-sensor type ISFET pH-meters have been developed. However, they could not be applied in fields because their performances are directly affected by the sensor condition. With only one sensor, the system could be easily damaged from environmental factors, and reliability of it is decreased. Therefore, a 4-channel PH-meter system is proposed to improve the reliability of ISFET pH-meter. It has 4 ISFETS as ion sensor, and a software which contains a new calibration and measurement algorithm appropriate to the system. The reliability of the system was proved by measuring hydrogen ion concentration in the pH standard solutions and buffer solutions.

  • PDF

Selective Adsorption Properties of Nitrate ion in Sulfate and Nitrate Solution by Bead and Fibrous Hybrid Ion Exchange Bed (비드와 섬유 혼성이온교환 베드를 이용한 황산이온과 질산이온 혼합용액에서 질산이온의 선택 흡착 특성)

  • 황택성;박명규
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • In this study, we have investigated the adsorption properties for nitrate ion in ground water using mixed resin type hybrid ion exchange (HIXF) and fiber type ion exchanger. Their swelling ratio (4.45 g/g) and ion exchange capacities (2.45 meq/g) were higer than the swelling ratio of IEC and IXF. Adsorption yield increased for nitrate $NO_3^-$ and sulfate $SO_4^{2-}$ ions were optimal at the concentration ratios of nitrate and sulfate below 1.0 and the adsorption yields were 100% and 20%, respectively. On the other hand it was shown that the degree of adsorpted for nitrate to pH 3, but it was little changed in the other pH range. We found that the selective adsorption capacity for nitrate was the optimal the mixing ratios of resin and fibrous ion exchanger of below 0.5.