• 제목/요약/키워드: Ion adsorption

검색결과 867건 처리시간 0.021초

비드와 섬유 혼성이온교환 베드를 이용한 황산이온과 질산이온 혼합용액에서 질산이온의 선택 흡착 특성 (Selective Adsorption Properties of Nitrate ion in Sulfate and Nitrate Solution by Bead and Fibrous Hybrid Ion Exchange Bed)

  • 황택성;박명규
    • 폴리머
    • /
    • 제27권1호
    • /
    • pp.69-74
    • /
    • 2003
  • 본 연구는 비드상 수지와 섬유이온교환체를 혼합한 이온교환 복합섬유의 지하수 중 질산이온의 선택흡착성능을 확인하였다. HIXF의 팽윤율은 4.45 g/g이었으며, 이온교환용량은 2.45 meq/g으로 IEC, IXF보다 높게 나타났다. 또한 NO$_{3}$$^{-}$/SO$_{3}$ $^{2-}$ 농도비가 1.0 이하에서 NO$_{3}$$^{-}$의 흡착은 100%로 이루어졌으며, 반면 SO$_{3}$$^{2-}$ 은 20%흡착되었다. 한편, NO$_{3}$$^{-}$기 흡착은 pH 3까지 크게 증가하였으며 그 이상에서는 증가하지 않는 경향을 나타내었다. HIXF의 비드와 섬유이온교환체의 혼합비가 0.5 이하에서 NO$_{3}$$^{-}$에 대한 선택흡착능은 우수하였다.

Zeta-potentials of Oxygen and Nitrogen Enriched Activated Carbons for Removal of Copper Ion

  • Park, Kwan-Ho;Lee, Chang-Ho;Ryu, Seung-Kon;Yang, Xiaoping
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.321-325
    • /
    • 2007
  • The oxygen and nitrogen enriched activated carbons were obtained from modification of commercial activated carbon by using nitric acid, sodium hydroxide and urea. Zeta-potentials of modified activated carbons were investigated in relation to copper ion adsorption. The structural properties of modified activated carbons were not so much changed, but the zeta-potentials and isoelectric points were considerably changed. The zeta-potential of nitric acid modified activated carbon was the most negative than other activated carbons in the entire pH region, and the $pH_{IEP}$ was shifted from pH 4.8 to 2.6, resulted in the largest copper ion adsorption capacities compare with other activated carbons in the range of pH 3~6.5. In case of urea modified activated carbon, copper ion adsorption was larger than that of the as-received activated carbon from pH 2 to pH 6.5 even though the $pH_{IEP}$ was shifted to pH 6.0, it was due to the coordination process operated between nitrogen functional groups and copper ion. The adsorption capacity of copper ion was much influenced by zeta-potential and $pH_{IEP}$ of carbon adsorbent.

Aspergillus niger의 생물 흡착제를 이용한 납이온의 흡착 (Adsorption of lead ion by using biomass of Aspergillus niger)

  • 김병하;김장억;문성훈;김희식;오희목;윤병대;권기석
    • 한국토양환경학회지
    • /
    • 제1권2호
    • /
    • pp.43-50
    • /
    • 1996
  • The adsorption charateristics of lead(II) ions on Aspergillus niger and Rhizopus arrhizus were investigated. Adsorption amount of A. niger and R. arrhizus was about 95 mg/g and 25 mg/g, respectively. These biomass was approached to adsorption equilibrium within reaction time of 1hr because of their high reactivity. The uptake of lead ion by A. niger was less sensitivity than it by R. arrhizus on the inhibition effect of alkali metals and the decreasing ratio of uptake of lead ion of A. niger and R. arrhizus by inhibition effect of alkali metals was 37% and 50%, respectively. In pre-treatment on these biomass, NaOH treatment was contributed high adsorption capacity to these biomass. Then, adsorption amount of A. niger and R. allhizus was increased about 25 mg/g and 10 mg/g, respectively. In isotherm for the adsorption of lead ion based on Freundlich equation, 1/n value of A. niger and R. ar고izus was calculated the range of 0.28-0.56 and 0.44-0.67, respectively.

  • PDF

Effects of NaOH Treatment on the Adsorption Ability of Surface Oxidized Activated Carbon for Heavy Metals

  • Min-Ho Park;So-Jeong Kim;Jung Hwan Kim;Jae-Woo Park
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.16-23
    • /
    • 2023
  • Heavy metal (Zinc, Cadmium, Lead) adsorption onto surface modified activated carbon was performed in order to better understand the effect of sodium ion addition to activated carbon. Surface modification methods in this research included water washing, nitric acid washing, and sodium addition after nitric acid washing. These surface modifications generated oxygen functional groups with sodium ions on the surface of the activated carbon.. This caused the change of the specific surface area as well as in the ratio of the carboxyl groups. Heavy metal adsorption onto sodium-containing activated carbon was the most among the three modifications. After the adsorption of heavy metals, the carboxyl group ratio decreased and sodium ions on the surface of the activated carbon were almost non-existent after the adsorption of heavy metals onto sodium-containing activated carbon. The results from this research indicated that ion exchange with sodium ions in carboxyl groups effectively improved heavy metal adsorption rather than electrostatic adsorption and hydrogen ion exchange.

Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구 (Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model)

  • 신용일;박상원
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

Cryptand 합성수지에 위한 금속 이온들의 흡착 (Adsorption of Metal Ions on Cryptand Synthetic Resin)

  • 이치영;김준태
    • 환경위생공학
    • /
    • 제20권4호통권58호
    • /
    • pp.38-44
    • /
    • 2005
  • Cryptand resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene divinylbenzene (DVB) copolymer with crosslink of $1\%,\;2\%,\;5\%\;and\;10\%$ by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of uranium$(UO_2^{2+})$ ion were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium$(UO_2^{2+})$ > zinc$(Zn^{2+})$ > samarium$(Sm^{3+})$ ion. The adsorption was in order of $1\%>2\%>5\%>10\%$ crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

하이드록실 아민으로 처리한 아크릴섬유의 구리 (II)이온의 흡착기구 (The Adsorption Mechanism of Copper (II) Ion on Acrylic Fiber Treated with Hydroxylamine)

  • 진영길;최석철
    • 한국의류학회지
    • /
    • 제12권1호
    • /
    • pp.27-35
    • /
    • 1988
  • In order to investigate a practical application of the fibrous adsorbent to heavy metal ions, acrylic fibers were treated with the hydroxylamine solution that was producted by hydroxylamine hydrochloride and potasium hydroxide in a condition of strong alkaline and $70^{\circ}C$. The adsorption mechanism of copper(2) ion on the fibrous adsorbent, that is hydroxylaminated acrylic fibers, was studied. The adsorption of copper(2) ion was explained in terms of the activated adsorption that are formed the complex with the ligand, such as C=N, N-H, NHOH, on the surface of the adsorbent. The activation energy was evaluated to be 3.8 Kcal/mol. and the times of adsorption equilibrium was approximately 10 minutes. The uptake of copper(2) ion was found to be effected with the increase of temperatures and the pH dependence.

  • PDF

설폰산형 비드와 섬유 혼성체를 이용한 도금수세수 중의 니켈 흡착 특성 (Adsorption Properties of Nickel ion from Plating Rinse Water Using Hybrid Sulfonated Bead and Fibrous Ion Exchanger)

  • 황택성;조상연
    • 폴리머
    • /
    • 제27권1호
    • /
    • pp.61-68
    • /
    • 2003
  • 본 연구에서는 도금폐수 중 니켈이온의 분리 회수를 위한 혼성 이온교환체의 제조 및 흡착 특성을 확인하였다. 니켈 흡착량은 이온교환체의 혼합비에 큰 영향이 없었으며, 비드상 이온교환수지 양이 증가할수록 증가하였다. 또한 Langmuir와 Freundlich흡착 등온식이 직선성을 보였으며 이로부터 니켈의 이온교환 친화력이 큰 것을 확인하였다. 또한 충전방식에 따른 압력손실은 다단충전법에서 적층수가 많아질수록 작아졌고, 혼합충전법에서는 비드 이온교환수지의 양이 증가할수록 압력손실은 감소하였다. 한편, 연속식 흡착실험 결과 다단충전방식의 경우 적층수가 증가할수록 초기 파괴 시간은 짧아졌으며, 최종 파괴 시간은 거의 동일한 것으로 나타났다. 반면, 혼합충전방식의 경우 이온교환섬유의 양이 증가할수록 흡착파괴 시간이 짧았으며, 이때 최대 흡착량은 각각 2.51 meq/g과 2.69 meq/g이었다. 한편, 모든 이온 교환체의 흡착된 니켈이온의 탈착은 10분 이내에 98% 이상 탈착되었다.

Effect of Metal Ions on the Degradation and Adsorption of Two Cellobiohydrolases on Microcrystalline Cellulose

  • 김동원;장영헌;김창석;이남수
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.716-720
    • /
    • 2001
  • To test the metal ion effect, hydrolysis experiments for two cellobiohydrolases (CBHⅠ and CBH Ⅱ) from Trichoderma reesei have been carried out in the presence of 10 mM metal ions, such as Cu++, Mn++, Ca++, Hg++, Ba++, Pb++, and Cd++. The addition of Mn++, Ba++, and Ca++(10 mM) during the hydrolysis of Avicel PH 101 caused an increase in the total reducing sugar (TRS) for CBH Ⅰ by 142, 135, and 114 percent, respectively. Those for CBH Ⅱ increased by 177, 175, and 115 percent, respectively. The Mn++ was the most stimulatory metal ion, whereas Hg++ was the most inhibitory metal ion. The adsorption experiments were performed to investigate how the influence of Mn++ and Hg++ on the hydrolysis is related to the adsorption of cellobiohydrolases on cellulose. The increase in TRS during hydrolysis by adding Mn++ caused an increase in adsorption affinity (Kad) and tightness (ΔHa). While, the decrease of TRS during hydrolysis by adding Hg++ caused a decrease in the adsorption affinity (Kad) and tightness (ΔHa). These results indicate the changes in the tightness and affinity of adsorption by adding metal ions play a crucial role in the degradation of the microcrystalline cellulose.

표면개질된 소나무 수피를 이용한 수용액의 구리이온 흡착 (Adsorption of copper ions from aqueous solution using surface modified pine bark media)

  • 박세근;김영관
    • 상하수도학회지
    • /
    • 제33권2호
    • /
    • pp.131-140
    • /
    • 2019
  • This study used a packed column reactor and a horizontal flow mesh reactor to examine the removal of copper ions from aqueous solutions using pine bark, a natural adsorbent prepared from Korean red pine (Pinus densiflora). Both equilibrium and nonequilibrium adsorption experiments were conducted on copper ion concentrations of 10mg/L, and the removals of copper ions at equilibrium were close to 95%. Adsorption of copper ions could be well described by both the Langmuir and Freundlich adsorption isotherms. The bark was treated with nitric acid to enhance efficiency of copper removal, and sorption capacity was improved by about 48% at equilibrium; mechanisms such as ion exchange and chelation may have been involved in the sorption process. A pseudo second-order kinetic model described the kinetic behavior of the copper ion adsorption onto the bark. Regeneration with nitric acid resulted in extended use of spent bark in the packed column. The horizontal flow mesh reactor allowed approximately 80% removal efficiency, demonstrating its operational flexibility and the potential for its practical use as a bark filter reactor.