• Title/Summary/Keyword: Ion adsorption

Search Result 867, Processing Time 0.024 seconds

Adsorption Characteristics of Sr ion and Cs ion by a Novel PS-zeolite Adsorbent Immobilized Zeolite with Polysulfone (Polysulfone으로 제올라이트를 고정화한 새로운 PS-zeolite 비드에 의한 Sr 이온 및 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.671-678
    • /
    • 2015
  • The adsorption characteristics of Sr and Cs ions were investigated by using PS-zeolite beads prepared by immobilizing zeolite with polysulfone (PS). The adsorption kinetics of Sr and Cs ions by PS-zeolite beads was described well by the pseudo-second-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 65.0 mg/g and 76.4 mg/g, respectively. In the binary system of Sr ion and Cs ion, the adsorption capacities of each ion decreased with increasing mole ratio of mixed counterpart ion, and Cs ion showed the higher hinderance than Sr ion. We found that thermodynamic properties of Sr and Cs ions on absorption reaction were spontaneous and endothermic at 293 to 323 K.

Evaluation of Ammonia Adsorption Capacity Using Various Metal Ion-Exchanged Zeolitic Materials Synthesized from Coal Fly Ash (금속 이온이 교환된 석탄 비산재 유래 합성 제올라이트 물질의 암모니아 흡착성능 평가 )

  • Jong-Won Park;Joo-Young Kwak;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.343-353
    • /
    • 2023
  • A zeolite material (ZCH) was synthesized from coal fly ash in an HD thermal power plant using a fusion/hydrothermal method. ZCH with high crystallinity could be synthesized at the NaOH/CFA ratio of 0.9. Ion-exchanged ZCH adsorbents for ammonia removal were prepared by ion-exchanging various cation (Cu2+, Co2+, Fe3+, and Mn2+) on the ZCH. They were used to evaluate the ammonia adsorption breakthrough curves and adsorption capacities. The ammonia adsorption capacities of the ZCH and ion-exchanged ZCHs were high in the order of Mn-ZCH > Cu-ZCH ≅ Co-ZCH > Fe-ZCH > ZCH according to NH3-TPD measurements. Mn-ZCH ion-exchanged with Mn has more Brønsted acid sites than other adsorbents. The ion-exchanged Cu2+, Co2+, Fe3+, or Mn2+ ions uniformly distributed on the surface or in the pores of the ZCH, and the number of acidic sites increased on the alumina sites to form the crystal structure of zeolite material. Therefore, when the ion-exchanged ZCH was used, the adsorption capacity for ammonia gas increased.

Remove of Sulphate Ion from Environmental Systems by using AlN Nanotubes

  • Baei, Mohammad T.;Hashemian, Saeedeh;Torabi, Parviz;Hosseini, Farzaneh
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1139-1143
    • /
    • 2014
  • The adsorption behavior of the sulphate ($SO{_4}^{2-}$) on the external surface of (5,0), (8,0), and (10,0) zigzag AlNNTs was studied by using density functional calculations. Adsorption energies in the nanotubes are about -8.59, -8.04, -8.60 eV with a charge transfer of 0.59, 0.48, 0.56|e| from the sulphate ion to the nanotubes, respectively. The adsorption energies indicated that sulphate ion can be absorbed strongly on the nanotubes. Therefore, these nanotubes can be used for adsorption of sulphate ion from the environmental systems. It was found that diameter of the AlNNTs has slight role in the adsorption of sulphate ion. The electronic properties of the nanotubes showed notable changes upon the adsorption process.

Modulation of chromatic reversibility of polydiacetylene Langmuir Schafer (LS) films by cadmium ion Ad/desorption

  • Lee, Gil Sun;Kim, Tae Young;Ahn, Dong June
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.312-315
    • /
    • 2018
  • Although the reversibility of 10,12-pentacosadiynoic amino meta-acid(PCDA-mBzA) against temperature and pH was reported, the modulation of reversibility by ion adsorption at terminal functional group has not been investigated. In this work, we developed a simple method for modulating the reversibility of PCDA-mBzA films upon a thermal stimulus by cadmium ion adsorption inducing the breakage of the outer hydrogen bonding of two hydrogen bonds, which are responsible for the reversible properties of PCDA-mBzA. External reflection-Fourier transform infrared (ER-FTIR) analyses revealed that the hydrogen bonding between the carboxylic acid groups was broken through ion adsorption and only a single hydrogen bond between the amide groups remained in the PCDA-mBzA polymer. In addition, PCDA-mBzA films could recover their original property through cadmium ion desorption. These results present that the transition between reversibility and irreversibility can be modulated artificially simply through the adsorption and desorption of metal ions.

A Study of Adsorption Characteristics of Uranium ion Using Amidoximated PP-g-AN Fibrous ion-exchanger in Brine Water (AOPP-g-AN 섬유이온교환체를 이용한 간수로부터 우라늄 이온 흡착특성에 관한 연구)

  • 황택성;최재은;이재천
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.121-127
    • /
    • 2002
  • We investigated uranium adsorption and adsorption process characteristics in brine water, changing column bed height packed with amidoximated polypropylene-g- acrylonitrile (AOPP-g-AN) fibrous ion-exchanger. Swelling ratios of AOPP-g-AN in fibrous ion-exchanger were 8.54g/g $H_2O_2$ and 8.87 g/g for $H_2O_2$ solvent respectively. Ion exchange capacity increased with degree of graft and showed the maximum, 3.99 meq/g at 100% degree of graft. In batch process, uranium adsorption had reached an initial equilibrium in 10 min with the adsorption rate of 9.5 mg/min. Finial adsorption capacity was 3.95 meq/g, and pH effect could not be observed. In continuous process, adsorption capacity depended on various packing ratios and showed the maximum, 3.92 meq/g at L/D=1. In L/D<2, breakthrough curve was shown two step by channeling flow and ununiform adsorption. Breakthrough time and adsorption capacity were 26 min and 3.63 meq/g, respectively, in brine water adsorption. When compared with actual brine water and model solution, there was no significant difference of adsorption characteristics.

Removal Characteristics of Sr Ion by Na-A Zeolite Synthesized using Coal Fly Ash Generated from a Thermal Power Plant (화력발전소에서 발생하는 석탄비산재로부터 합성한 Na-A 제올라이트의 Sr 이온 제거 특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.363-371
    • /
    • 2017
  • This study evaluates the adsorption properties of Sr ions in an aqueous solution of the synthetic zeolite (Z-Y1) prepared using coal fly ash generated from a thermal power plant. In order to investigate the adsorption characteristics, the effects of various parameters such as the initial concentrations of Sr ion, contact time, and solution pH were investigated in a batch mode. The Langmuir and Redlich-Peterson model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacity of Sr ions, as determined the Langmuir model, was 181.68 mg/g. It was found that by varying the Sr ion concentration, pH, and temperature, the pseudo-second-order kinetic model describes the adsorption kinetics of the Sr ion better than the pseudo-first-order kinetic model. The calculated thermodynamic parameters of ${\Delta}H^0$ and ${\Delta}G^0$ showed that the adsorption of Sr ions on Z-Y1 was occurred through a spontaneous and an endothermic reaction. We found that the adsorption of Sr ions by Z-Y1 was more affected by pH than by temperature and Sr ion concentration.

Removal of Cs and Sr Ions by Absorbent Immobilized Zeolite with PVA (제올라이트를 PVA로 고정화한 흡착제에 의한 Cs과 Sr 이온 제거)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.450-457
    • /
    • 2015
  • In this research a adsorbent, PVA-Zeolite bead, was prepared by immobilizing zeolite with PVA. The results of XRD and SEM analysis showed that the prepared PVA-Zeolite beads had porous structure and the zeolite particles were in mobilized within the internal matrix of the beads. The adsorption properties of Sr ion and Cs ion with the adsorbent were studied by different parameters such as effect of pH, adsorption rate, and adsorption isotherm. The adsorption of Sr ion and Cs ion reached equilibrium after 540 minutes. The adsorption kinetics of both ions by the PVA-Zeolite beads were fitted well by the pseudo-second-order model more than pseudo-first-order model. The equilibrium data fitted well with Langmuir isotherm model. The maximum adsorption capacities of Sr ion and Cs ion calculated from Langmuir isotherm model were 52.08 mg/g and 58.14 mg/g, respectively. The external mass transfer step was very fast compared to the intra-particle diffusion step in the adsorption process of Cs ion and Sr ion by the PVA-Zeolite beads. This result implied that the rate controlling step was the intra-particle diffusion step.

Adsorption Characteristics of U ranium (VI) Ion on Cryptand Synthetic Resin Adsorbent

  • Kim, Hae-Jin
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.225-231
    • /
    • 2017
  • Cryptand resins were synthesized by mixing 1-aza-18-crown-6 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 5%, and 10% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > calcium ($Ca^{2+}$) > neodymium ($Nd^{3+}$) ion, adsorbability of the uranium ion was the crosslink in order of 1%, 2%, 5%, and 10% and it was increased with the lower dielectric constant.

Adsorption of Uranium (VI) Ion on 1-Aza-12-Crown-4 Synthetic Resin with Styrene Hazardous Material

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • 1-Aza-12-crown-4 macrocyclic ligand was combined with styrene (2th petroleum in 4th class hazardous materials) divinylbenzene copolymer having 1%, 2%, 3%, and 6% crosslinks by a substitution reaction, in order to synthesize resin. These synthetic resins were confirmed by chlorine content, elementary analysis and IR-spectrum. As the results of the effects of pH, equilibrium arrival time, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over and adsorption equilibrium of uranium ion was about 2 hours. In addition, adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > iron ($Fe^{3+}$) > lutetium ($Lu^{3+}$) ions, adsorbability of the uranium ion was in the crosslinks order of 1%, 2%, 3%, and 6% was increased with the lower dielectric constant.

Reduction of Phosphate Adsorption by Ion Competition with Silicate in Soil

  • Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.286-296
    • /
    • 2007
  • To increase phosphate (P) availability in soils, the efficiency of silicate (Si) in reducing P adsorption was investigated by competitive adsorption tests under changing conditions of pH, ion concentrations, and order of anion addition along with single adsorption properties of each ion at $20^{\circ}C$. In the single ion adsorption study, P and Si ions showed the opposite reaction patterns: phosphate adsorption decreased with increasing pH and attained adsorption maximum however, silicate adsorption increased with increasing pH without attaining adsorption maximum. Phosphorus and Si adsorption were influenced by pH in the range of 5.0 - 9.0 and the type and amount of P and Si concentration. Silicate added to soil before P or in a mixture with P significantly reduced P adsorption above pH 7.0; however, there was no significant Si-induced decreased in P adsorption at pH 5.0 when anions were added as mixture. The efficiency of Si in reducing P adsorption increased with increasing Si concentration and pH. The effect of P on Si adsorption was relatively small at pH 5.0 and no effect of P on silicate adsorption was observed at pH 9.0. The presence of Si strongly depressed P adsorption when Si was added before P compared to P and Si added as a mixture. These results suggest that application of Si may decrease P adsorption and increase the availability of P in soils. Furthermore, a Si source would be better to add before P application to enhance the availability of P in soils.