• 제목/요약/키워드: Ion Irradiation

검색결과 453건 처리시간 0.023초

Sol-gel법을 이용한 백색도가 높은 가시광 응답형 N-doped TiO2 제조 및 특성 평가 연구 (Preparation and Characterization of Visible Light-Sensitive N-doped TiO2 Using a Sol-gel Method)

  • 이나리;유리;김태관;피재환;김유진
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.477-482
    • /
    • 2017
  • Nitrogen-doped titanium dioxide (N-doped $TiO_2$) is attracting continuously increasing attention as a material for environmental photocatalysis. The N-atoms can occupy both interstitial and substitutional positions in the solid, with some evidence of a preference for interstitial sites. In this study, N-doped $TiO_2$ is prepared by the sol-gel method using $NH_4OH$ and $NH_4Cl$ as N ion doping agents, and the physical and photocatalytic properties with changes in the synthesis temperature and amount of agent are analyzed. The photocatalytic activities of the N-doped $TiO_2$ samples are evaluated based on the decomposition of methylene blue (MB) under visible-light irradiation. The addition of 5 wt% $NH_4Cl$ produces the best physical properties. As per the UV-vis analysis results, the N-doped $TiO_2$ exhibits a higher visible-light activity than the undoped $TiO_2$. The wavelength of the N-doped $TiO_2$ shifts to the visible-light region up to 412 nm. In addition, this sample shows MB removal of approximately 81%, with the whiteness increasing to +97 when the synthesis temperature is $600^{\circ}C$. The coloration and phase structure of the N-doped $TiO_2$ are characterized in detail using UV-vis, CIE Lab color parameter measurements, and powder X-ray diffraction (XRD).

HFL-I 세포의 잠재적 치사 손상 회복에 따른 세포 생존율 변화 (Change of Surviving Fractions based on the Recovery of Potentially Lethal Damage in HFL-I Cell Line)

  • 최은애
    • 한국방사선학회논문지
    • /
    • 제11권3호
    • /
    • pp.147-151
    • /
    • 2017
  • HFL-I 세포를 이용하여 immediate assay를 시행하였다. 발생한 repair의 양이 없기 때문에 $LogSn=-n{\gamma}({\alpha}d+{\beta}d^2$)에서 ${\gamma}$의 값은 1이며 이는 LQ model과 같다. 그리고 세포생존율의 데이터를 바탕으로 ${\alpha}$, ${\beta}$, ${\alpha}/{\beta}$의 값을 얻었다. 또한 12시간, 36시간, 48시간 후 delayed assay를 시행하여 marchese model 통해 ${\gamma}$값을 도출한 후 Pot entially lethal damage repair (PLDR)가 발생한 양을 확인하였다. delay time이 길어질수록 ${\gamma}$값은 감소함으로써 PLDR의 양이 증가함을 확인하였고 이에 따라 세포생존율은 상승됨을 보였다. 탄소빔의 1분할, 2분할, 3분할, 4분할 조사 시 각각의 interval 시간동안 나타나는 ${\gamma}$값 역시 감소하고 있음을 확인하여 PLDR의 발생을 확인할 수 있었지만 ${\gamma}$값만 감안한 marchese model을 surviving fraction값에 적용 시 오류 발생함을 보였다. 이는 탄소빔 분할조사 시 다른 회복의 매커니즘이 존재함을 뜻하여 이를 적용할 수 있는 새로운 파라미터가 고려되어져야 할 것이다.

SCANNING ELECTRON MICROSCOPY ANALYSIS OF FUEL/MATRIX INTERACTION LAYERS IN HIGHLY-IRRADIATED U-Mo DISPERSION FUEL PLATES WITH Al AND Al-Si ALLOY MATRICES

  • Keiser, Dennis D. Jr.;Jue, Jan-Fong;Miller, Brandon D.;Gan, Jian;Robinson, Adam B.;Medvedev, Pavel;Madden, James;Wachs, Dan;Meyer, Mitch
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.147-158
    • /
    • 2014
  • In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance

  • Liu, Chunping;Lin, Haili;Gao, Shanmin;Yin, Ping;Guo, Lei;Huang, Baibiao;Dai, Ying
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.441-447
    • /
    • 2014
  • $AgI/AgCl/H_2WO_4$ double heterojunctions photocatalyst was prepared via deposition-precipitation followed by ion exchange method. The structure, crystallinity, morphology, chemical content and other physical-chemical properties of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL). The photocatalytic activity of the $AgI/AgCl/H_2WO_4$ was evaluated by degrading methyl orange (MO) under visible light irradiation (${\lambda}$ > 400 nm). The double heterojunctions photocatalyst displayed more efficient photocatalytic activity than pure AgI, AgCl, $H_2WO_4$ and AgCl/$H_2WO_4$. Based on the reactive species and energy band structure, the enhanced photocatalytic activity mechanism of $AgI/AgCl/H_2WO_4$ was discussed in detail. The improved photocatalytic performance of $AgI/AgCl/H_2WO_4$ double heterojunctions could be ascribed to the enhanced interfacial charge transfer and the inhibited recombination of electron-hole pairs, which was in close relation with the $AgI/AgCl/H_2WO_4$ heterojunctions formed between AgI, AgCl and $H_2WO_4$.

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • 장야무진;이재현;최순형;임세윤;이종운;배윤경;황종승;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis

  • Lin, Xi;Liu, Sha;Xie, Guangrong;Chen, Jing;Li, Penghua;Chen, Jianhua
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1908-1917
    • /
    • 2016
  • Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.

Novel Activation by Electrochemical Potentiostatic Method

  • 이학형;이준기;정동렬;권광우;김익현
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

기능성 덴드리머 박막의 광학적 거동 및 전기적 특성 (Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films)

  • 박재철;정상범;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권5호
    • /
    • pp.201-205
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

치료방사선 Portal Image를 위한 다이오드 방사선 센서의 특성에 관한 연구 (A Study on Characteristics of A Diode Radiation Sensor for Portal Image of Therapy Radiation)

  • 이동훈;권장우;홍승홍
    • 센서학회지
    • /
    • 제5권5호
    • /
    • pp.11-20
    • /
    • 1996
  • 본 연구에서는 가속기에서 발생하는 치료방사선을 방사선원으로 사용하여 다이오드 치료방사선 검출센서의 특성을 조사하였다. 방사선량에 따른 선형성, 재현성, 오차율, 에너지의존성, 방사선조사후의 감도변화량, 다이오드의 숫자에 따른 출력값 측정 및 Portal 영상을 위한 가능성 검사를 위해서 핵계측기를 이용한 펄스 성형(成形)을 시도하였다. 제작된 시스템의 효율성을 검증하기 위하여 구성된 다이오드 센서로 조사야(照射野)별 심부량(深部量)를 백분율을 기존의 측정장치인 기체 전리함을 이용한 값과 상호 비교하여 보았다. 또한 다이오드의 선량측정회로를 다채널로 구성하여 A/D 변환후 컴퓨터 상에서 치료영역의 범위를 읽을 수 있었다. 모형인체(模型人體)를 치료대 위에 놓고 읽은 출력값과 모형인체(模型人體)없이 직접 읽은 출력값을 비교하여 Portal 영상을 위한 가능성을 제시하여 보았다.

  • PDF