• Title/Summary/Keyword: Ion Irradiation

Search Result 453, Processing Time 0.027 seconds

Quenching Effect in an Optical Fiber Type Small Size Dosimeter Irradiated with 290 MeV·u-1 Carbon Ions

  • Hirata, Yuho;Watanabe, Kenichi;Uritani, Akira;Yamazaki, Atsushi;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.222-228
    • /
    • 2016
  • Background: We are developing a small size dosimeter for dose estimation in particle therapies. The developed dosimeter is an optical fiber based dosimeter mounting an radiation induced luminescence material, such as an OSL or a scintillator, at a tip. These materials generally suffer from the quenching effect under high LET particle irradiation. Materials and Methods: We fabricated two types of the small size dosimeters. They used an OSL material Eu:BaFBr and a BGO scintillator. Carbon ions were irradiated into the fabricated dosimeters at Heavy Ion Medical Accelerator in Chiba (HIMAC). The small size dosimeters were set behind the water equivalent acrylic phantom. Bragg peak was observed by changing the phantom thickness. An ion chamber was also placed near the small size dosimeters as a reference. Results and Discussion: Eu:BaFBr and BGO dosimeters showed a Bragg peak at the same thickness as the ion chamber. Under high LET particle irradiation, the response of the luminescence-based small size dosimeters deteriorated compared with that of the ion chamber due to the quenching effect. We confirmed the luminescence efficiency of Eu:BaFBr and BGO decrease with the LET. The reduction coefficient of luminescence efficiency was different between the BGO and the Eu:BaFBr. The LET can be determined from the luminescence ratio between Eu:BaFBr and BGO, and the dosimeter response can be corrected. Conclusion: We evaluated the LET dependence of the luminescence efficiency of the BGO and Eu:BaFBr as the quenching effect. We propose and discuss the correction of the quenching effect using the signal intensity ratio of the both materials. Although the correction precision is not sufficient, feasibility of the proposed correction method is proved through basic experiments.

Effects of Ar+ ion Beam Irradiation on the Adhesion Forces between Carbon fibers and Thermosetting Resins (Ar+ 이온 빔 조사가 탄소섬유와 열경화성 수지 간 계면결합력에 미치는 영향)

  • 박수진;서민강;김학용;이경엽
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.718-727
    • /
    • 2002
  • In this work, an Ar+ beam was irradiated on carbon fiber surfaces to improve the interfacial shear strength (IFSS) of the resulting composites using an ion assisted reaction (IAR) method h single fiber pull-out test was executed to investigate the basic characteristics of the single Carbon fiber/matrix interface. Based on Greszczuk's geometrical model, the debonding force for pull-out of the fiber from the resins was discussed with the applied ion beam energy as a result, it was known that an ion beam treatment produced the functional groups on fiber surface and etching lines along the fiber axis direction, resulting in increasing the adhesion forces between fibers and matrix, which caused the improvement of the IFSS in a composite system. And, it was also found that the maximum IFSS was shown at 0.8 keV ion beam energy in this system.

Deposition of Copper Film on Polytetrafluoroethylene (PTFE) Modified by 1 keV Ion Irradiation (1 keV $Ar^+$이온빔으로 개질된 polytetrafluoroethylene (PTFE) 위의 구리 박막 증착)

  • Cho, Jun-Sik;Yoon, Ki-hyun;Koh, Seok-Keun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • A surface of polytetrafluoroethylene(PTFE) was modified with changing ion doses by 1 keV $Ar^+$ ion irradiation and Cu films having thickness $5000\;{\AA}$ were deposited on the modified PTFE. The SEM study showed that the surface texture of modified PTFE was in the form of cones whose height increased depending on ion doses. Through XPS spectra, it was found that the intensity of F ls peaks decreased with ion doses by preferential sputtering of F atoms and the C-C and / or C-F chains were formed by the crosslinking in the newly unstable chains. Cu films were deposited uniformly along the filaments formed on the modified PTFE. In x-ray diffraction (XRD) spectra of deposited Cu films on modified PTFE, a preferred orientation along (111) and (200) planes was found and the peak intensity of (111) plane increased as surface roughness of modified PTFE increased. The resistivity of Cu films was changed from $2.7{\mu}{\Omega}cm$ of unmodified PTFE to $4.3{\mu}{\Omega}cm$ of modified PTFE at ion dose of $1{\times}10^{16}/\textrm{cm}^2$ and the abrupt increase of resistivity in the modified PTFE at ion dose of $1{\times}10^{17}/\textrm{cm}^2$ was due to being cut off the film which resulted from the increased surface roughness.

  • PDF

Surface Modification of Polytetrafluoroethylene by Using Low Energy Hydrogen Ion Beam (저에너지 수소 이온빔을 이용한 polytetrafluoroethylene 표면 개질)

  • Lee, Jung-Hwan;Kim, Dong-Hwan;Yeo, Woon-Jung;Han, Young-Gun;Cho, Jun-Sik;Kim, Hyun-Joo;Koh, Seok-Jeun
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.612-618
    • /
    • 2006
  • Surface modification of PTFE by ion irradiation was performed to improve its surface properties, In the case where argon was used to irradiate the PTFE films, an increase in the adhesion strength was observed when the ion fluence was over $1\times10^{15}\;ions/cm^2$, but the surface morphology dramatically changed to a needle-shaped one. However, when we used hydrogen ions under $O_2$ environmental gas, the adhesion strength increased at an ion fluence of $5\times10^{16}\;ions/cm^2$ and the surface morphology by the hydrogen irradiation was not needle-shaped. The surface morphology and adhesion strength of the hydrogen modified PTFE was influenced by the oxygen flow rate. It was confirmed by reflectance measurements that the surface properties of the hydrogen ion irradiated PTFE were superior to those of the argon ion irradiated PTFE.