• Title/Summary/Keyword: Ion Implanter

Search Result 15, Processing Time 0.025 seconds

Remote Control System of Ion Implanter (이온주입장치의 원격제어시스템 구축)

  • 이재형;양대정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1042-1047
    • /
    • 2003
  • The goal of this research is to implement a PC-based remote control system of ion implanter using Visual Basic programming. Presently, skilled process engineers are required to regularly setup and adjust implanter parameters. Any reduction in the number of production hours devoted to ion beam implanter setup or recalibration after a species change would represent substantial improvements in both manpower and equipment utilization. An optical communication system for the remote control and telemetry in the operation of the 50kev potential was designed and constructed. This system enables continuous and safe operation of the ion implanter and can be the basis for the automation. The isolation characteristics of optical fiber were 10kV/cm, and performance tests of the system under the intense noise environment during the implanter operations showed satisfactory results. This system is designed to completely replace the existing human-machine interface with many new functions. This paper describes the important components of the system including system architecture and software development. It is expected that this system can be used for the communication and control purpose in the high noise environments such as the operation of the MeV energy implanter or other high power, high noise systems.

CU+ ION EXTRACTION FROM A MODIFIED BERNAS ION SOURCE IN A METAL-ION IMPLANTER

  • Hong, In-Seok;Lee, Hwa-Ryun;Trinh, Tu Anh;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.709-714
    • /
    • 2009
  • An ion implanter, which can serve as a metal-ion supply, has been constructed and performance tested. Copper ions are generated and extracted from a Bernas ion source with a heating crucible that provides feed gases to sustain the plasma. Sable arc plasmas can be sustained in the ion source for a crucible temperature in excess of $350^{\circ}C$. Stable extraction of the ions is possible for arc Currents less than 0.3 A. Arc currents increase with the induced power of a block cathode and the transverse field in the ion source. $Cu^+$ ions in the extracted beam are separated using a dipole magnet. A $20{\mu}A$ $Cu^+$ ion current can be extracted with a 0.2 A arc current. The ion current can support a dose of $10^{16}ions/cm^2$ over an area of $15\;cm^2$ within a few hours.

Characterization of X-ray Emitted in the Ion Implantation Process of Semiconductor Operations (반도체 제조 이온주입 공정의 이온 임플란타 장치에서 엑스레이 발생 특성)

  • Dong-Uk Park;Kyung Ehi Zoh;Soyeon Kim;Seunghee Lee;Eun Kyo Jeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.439-446
    • /
    • 2023
  • Objectives: The aims of this study are to investigate how X-rays are emitted to surrounding parts during the ion implantation process, to analyze these emissions in relation to the properties of the ion implanter equipment, and to estimate the resulting exposure dose. Eight ion implanters equipped with high-voltage electrical systems were selected for this study. Methods: We monitored X-ray emissions at three locations outside of the ion implanters: the accelerator equipped with a high-voltage energy generator, the impurity ion source, and the beam line. We used a Personal Portable Dose Rate and Survey Meter to monitor real-time X-ray levels. The SX-2R probe, an X-ray Features probe designed for use with the RadiagemTM meter, was also utilized to monitor lower ranges of X-ray emissions. The counts per second (CPS) measured by the meter were estimated and then converted to a radiation dose (𝜇Sv/hr) based on a validated calibration graph between CPS and μGy/hr. Results: X-rays from seven ion implanters were consistently detected in high-voltage accelerator gaps, regardless of their proximity. X-rays specifically emanated from three ion implanters situated in the ion box gap and were also found in the beam lines of two ion implanters. The intensity of these X-rays did not show a clear pattern relative to the devices' age and electric properties, and notably, it decreased as the distance from the device increased. Conclusions: In conclusion, every gap, in which three components of the ion implanter devices were divided, was found to be insufficiently shielded against X-ray emissions, even though the exposure levels were not estimated to be higher than the threshold.

A Study on Implementation of Source Head Ass'y of Implanter (이온주입기 Source Head Ass'y 개발에 관한 연구)

  • Han, Jung-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.267-269
    • /
    • 2008
  • 본 연구는 이온주입(Ion Implanter)장비의 성능향상과 재현성 있는 Source Head를 개발하기 위한 방법이다. 본 개발은 이온주입설비가 가지고 있는 Cathode 열전자를 이용하여 원자라는 Source Positive의 극성을 생성하여 보다 높은 이온화를 발생하여 많은 시간 동안 사용 가능하도록 하였다. 기존에는 Gas의 손실이 많아 원자의 이온화에 대한 열전자의 소모성을 증가하는 원인을 제공하였으나, 본 개발에서는 원자의 유입방식을 공중 분산방식으로 적용함으로써 열전자의 손실로 발생하는 부분을 억제하는 효과와 Arc Chamber의 압력을 낮게 가지고 갈 수 있고 Chamber의 오염을 억제하는 효과를 얻을 수 있었다.

  • PDF

MEVVA ion Source And Filtered Thin-Film Deposition System

  • Liu, A.D.;Zhang, H.X.;Zhang, T.H.;Zhang, X.Y.;Wu, X.Y.;Zhang, S.J.;Li, Q.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.55-57
    • /
    • 2002
  • Metal-vapor-vacuum-arc ion source is an ideal source for both high current metal ion implanter and high current plasma thin-film deposition systems. It uses the direct evaporation of metal from surface of cathode by vacuum arc to produce a very high flux of ion plasmas. The MEVVA ion source, the high-current metal-ion implanter and high-current magnetic-field-filtered plasma thin-film deposition systems developed in Beijing Normal University are introduced in this paper.

  • PDF

A Study on Development of Efficient Source Head (효율적인 Source Head 개발에 관한 연구)

  • Kim, Gui-Jung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.865-868
    • /
    • 2007
  • This research is the method that develops the efficient Source Head and the performance of Ion Implanter. Source Head is used during 20 days because Source Head's life time is different from the life time of most components. Components which is replaced to remake the Source Head is very expensive, and moreover, the above of 50% is used with one time. In this research, as we applied the influx method of the atom in aerial distributed method, obtained the effect which suppresses the portion which occurs with loss of thermion and is a possibility of lowering the pressure of the Arc. And then We it will be able to suppress be imbrued of the Chamber.

  • PDF

Filtered Plasma Deposition and MEVVA Ion Implantation

  • Liu, A.D.;Zhang, H.X.;Zhang, T.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.46-48
    • /
    • 2003
  • The modification of metal surface by ion implantation with MEVVA ion implanter and thin film deposition with filtered vacuum arc plasma device is introduced in this paper. The combination of ion implantation and thin film deposition is proved as a better method to improve properties of metal surface.

The Characteristic Study on the Extraction of a Co Ion in the Metal Ion Implanter (금속이온 주입기에서의 Co 이온의 인출 특성 연구)

  • Lee, Hwa-Ryun;Hong, In-Seok;Trinh, Tu Anh;Cho, Yong-Sub
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2009
  • Proton Engineering Frontier Project (PEFP) has supplied the metal ions to users by using an installed metal ion implanter of 120 keV. At present a feasibility study is being performed for a cobalt ion implantation. For a cobalt ion extraction we studied to sustain the high temperature($648^{\circ}C$) for metal ions vaporization from a cobalt chloride powder by using an alumina crucible in the ion source. The temperature condition of the crucible was satisfied with the plasma generation at the arc current of 120V and EHC power of 250W. The extracted beam current of $Co^+$ ions was dependent on the arc current in the plasma. The maximum beam current was $100{\mu}A$ at 0.18A of the arc current. The 3 peak currents of the extracted ions such as $Co^+$, $CoCl^+$ and $Cl^+$ were obtained by adjusting a mass analyzing magnet and the $Co^+$ ion beam peak current fraction as around 70% in the sum of the peak currents. The fluence of the implanted cobalt ions at the $10{\mu}A$ of the beam current and 90 minutes of the implantation time into an aluminum sample as measured around $1.74{\times}10^{17}#/cm^2$ by a quantitative analysis method of RBS (Rutherford Backscattering Spectrometry).

Stabilization of Modified Deceleration Mode for Improvement of Low-energy Ion Implantation Process (저 에너지 이온 주입의 개선을 위한 변형된 감속모드 이온 주입의 안정화 특성)

  • 서용진;박창준;김상용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • As the integrated circuit device shrinks to the deep submicron regime, the ion implantation process with high ion dose has been attracted beyond the conventional ion implantation technology. In particular, for the case of boron ion implantation with low energy and high dose, the stabilization and throughput of semiconductor chip manufacturing are decreasing because of trouble due to the machine conditions and beam turning of ion implanter system. In this paper, we focused to the improved characteristics of processing conditions of ion implantation equipment through the modified deceleration mode. Thus, our modified recipe with low energy and high ion dose can be directly apply in the semiconductor manufacturing process without any degradation of stability and throughput.