• Title/Summary/Keyword: Ion Exchange Capacity

Search Result 389, Processing Time 0.026 seconds

Studies on Physical Properties of Sulfonpolyimide for Fuel Cell (연료전지용 술폰폴리이미드의 물성 연구)

  • Ko, Jae-Churl;Ahn, Bum-Jong;Park, Young-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.151-156
    • /
    • 2005
  • Many researchers have been focused on polymer electrolyte membrane (PEM) to improve performance of a fuel cell. Sulfonpolyimide with hydrocarbon was synthesized from ODA (4,4-diaminodiphenyl ether), ODADS (4,4-diaminodiphenyl ether-2,2-disulfonic acid), NTDA (1,4,5,8-naphthalenetetracarboxylicdianhydride) and CSA (chlorosulfonic acid). In order to estimate the feasibility as a fuel cell, the performance of sulfonpolyimide was analyzed through a swelling degree, IEC (ion exchange capacity), ion conductivity and TEM (transmission electron microscope). As the results of this performance test, swelling degree, IEC and ion conductivity were 37%, 0.06 meq/g and 0.08 S/cm respectively, when the CSA concentration was 0.4 M. It was thought that sulfonpolyimide could be used as a fuel cell through improvement of electrolyte membrane.

Studies on the Adsorption of Linear Alkylbenzene Sulfonate from Waste Water by Fibrous Aminated Acrylic ion-Exchanger (아민화 아크릴계 이온교환섬유의 폐수 중 Linear Alkylbenzene Sulfonate 흡착에 관한 연구)

  • 황택성;박진원;김원종
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.516-522
    • /
    • 2002
  • The ion exchange characteristic of quaternary ammonium as functional group containing aminated acrylic fibrous ion exchanger were studied for the adsorption of linear alkylbenzene sulfonate (LAS) in a continuous ion exchange process. The adsorption capacities of aminated acrylic for LAS as the adsorption temperature were increased with increasing adsorption temperature and were equilibrated at $40^{\circ}C$. The maximum adsorption capacities as column packing ratio (L/D) were obtained at L/D>2. The adsorption capacity for LAS was increased with increasing pH and the maximum adsorption capacity as pH was obtained at pH 7. The effects of temperature and pH were similar to those of flow rate and concentration of LAS tin the breakthrough curves, the breakthrough time and slope of breakthrough corves decreased with increasing flow rate and concentration of LAS in adsorption process.

Preparation and Characteristics of Sulfonated HIPS ion Exchange Nanofiber by Electrospinning (전기방사에 의한 술폰화 HIPS 이온교환 나노섬유의 제조 및 특성)

  • Choi, Eun-Jung;Hwang, Taek-Sung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • In this study, it was prepared for nanofiber with high impact polystyrene(HIPS). HIPS is able to crosslinking after electrospinning with crosslinking agent and it could overcome brittle characteristics of polystyrene(PS). After thermal crosslinking, HIPS nanofiber was sulfonated by sulfuric acid. It was investigated FT-IR, XPS, water uptake, ion exchange capacity(IEC), SEM, and contact angle. According to the result of FT-IR and XPS, it was increased due to introduce the hydrophilic group($SO_3H$) in the HIPS nanofiber. The highest water uptake and IEC were 75.6%, 2.67 meq/ g at 120 min sulfonation time with 7.5 wt% DVB.

Effects of Ionic Speciation of Lysine on Its Adsorption and Desorption Through a Sulfone-type Ion-Exchange Column

  • Choi, Dong-Hyouk;Lee, Ki-Say
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1527-1532
    • /
    • 2007
  • Lysine produced during microbial fermentation is usually recovered by an ion-exchange process, in which lysine is first converted to the cationic form (by lowering the pH to less than 2.0 with sulfuric acid) and then fed to a cationexchange column containing an exchanger that has a sulfone group with a weak counterion such as NH;. Ammonia water with a pH above 11 is then supplied to the column to displace the purified lysine from the column and allow its recovery. To enhance the adsorption capacity and for a possible reduction in chemical consumption, monovalent lysine fed at pH 4 was investigated in comparison with conventional divalent lysine fed at pH 1.5. The adsorption capacity increased by more than 70% on a mass basis using pH 4 feeding compared with pH 1.5 feeding. Lysine adsorbed at pH 4 started to elute earlier than that adsorbed at pH 1.5 when ammonia water was used as the eluant solution, and the extent of early elution became more notable at lower concentrations of ammonia. Moreover, the elution of monovalent lysine fed at pH 4 displayed a stiffer front boundary and higher peak concentration. However, when the ammonium concentration was greater than 2.0 N, complete saturation of the bed was delayed during adsorption and the percent recovery yield from elution was lowered., both drawbacks that were considered inevitable features originating from the increased adsorption of monovalent lysine.

Ion Exchange Membrane for Desalination by Electrodialysis Process: A Review (전기투석법에 의한 담수화용 이온교환막: 총설)

  • Sarsenbek, Assel;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.91-99
    • /
    • 2022
  • It is a global challenge to fulfill the demand for clean water at an affordable cost to all the strata of the population. Desalination of seawater as well as brackish water by the membrane separation process is a well-established and cost-efficient method. However, there is still inherent problem of membrane fouling, disposal of the reject as well as a capital-intensive process. While electrodialysis (ED) is a membrane-based separation process in which a driving force is the potential difference. The advantages of ED process are excellent efficiency and low operation cost. Ion exchange membrane (IEM) used in the ED process needs to have higher chemical and thermal stability along with excellent mechanical strength for long-term use without losing its efficiency. The ion exchange capacity of the ED membrane is largely dependent on the conductivity of IEMs. In this review, the modification strategy of the pristine membrane to enhance the stability and ion conductivity of cation exchange membrane (CEM) and anion exchange membrane (AEM) is discussed.

Phosphorus Adsorption by Layered Double Hydroxide (층상이중수산화물을 이용한 인 흡착)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.404-410
    • /
    • 2005
  • A series of batch type adsorption experiments were performed to remove aquatic phosphorus, where the layered double hydroxide (HTAL-CI) was used as an powdered adsorbent. It showed high adsorption capacity (T-P removal: 99.9%) in the range of pH 5.5 to 8.8 in spite of providing low adsorption characteristics (pH<4). The adsorption isotherm was approximated as a modified Langmuir type equation, where the maximum adsorption amount (50.5mg-P/g) was obtained at around 80mg-P/L of phosphorus concentration. A phosphate ion can occupy three adsorption sites with a chloride ion considering the result that 1 mol of phosphate ion adsorbed corresponded to the 3 moles of chloride ion released. Although the chloride ion at less than 1,000mg-CI/L did not significantly affect the adsorption capacity of phosphate, carbonate ion inhibited the adsorption property.

Synthesis of Cation-Exchange Membrane by the Monomer Sorption

  • Park, Yong-Jin;Moon, Seung-Hyeon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.1-4
    • /
    • 2003
  • LDPE/polystyrene cation exchange membranes were prepared through a monomer-sorption method and UV radiation polymerization. The reaction behaviors in the preparation were investigated. The membranes prepared were characterized in terms of physical and electrochemical properties. The membranes exhibited reasonable properties for an ion-exchange membrane with weight gain (Wr) of above 0.3, electrical resistance of below 1.0 Ω $\textrm{cm}^2$ and ion-exchange capacity of 1.8 meq/g-dry membrane. DSC studies and FE-SEM image revealed the formation of a homogeneous membrane. Both the current-voltage and the chronopotentiometric curves of the membranes indicated that LDPE/polystyrene membranes can be properly used at a high current density, and the surface homogeneity of cation-exchange sites in the membrane was comparable to that in a commercial membrane.

  • PDF

Studies on the Preparation and Characterization of PVA Based Cation-exchange Membranes for DMFC Application (직접 메탄올 연료전지 적용을 위한 PVA 기반 양이온교환막 제조 및 특성연구)

  • Jeon, Yi Seul;Kim, Ka young;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.144-151
    • /
    • 2015
  • The water-soluble poly(vinyl alcohol) membranes with the addition of sulfosuccinic acid (SSA) were prepared and to assign the ion exchange capacity, poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA) was added to PVA according to PSSA_MA contents of 70, 80 and 90 wt%. To characterize the resulting membranes, FT-IR, water contents, ion exchange capacity, proton conductivity and methanol permeability were measured. As PSSA_MA contents increased, water contents, ion exchange capacity, proton conductivity increased, but methanol permeability decreased. From these results, the best preparation component was known as PVA10/SSA9/PSSA_MA80.

Continuous Ion Exchange Characteristics of Ni, Co and Ag Ions in Acidic-Oxidizing Conditions (산성-산화성 분위기에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 연속식 이온교환 특성)

  • Kim, Young H.;Yang, Hyun S.;Kim, Woong K.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.218-224
    • /
    • 1999
  • Continuous ion exchange characteristics of the synthetic coolant contained Ni, Co and Ag ions of low concentration in acidic-oxidizing conditions have been studied to suggest the guideline for the optimum operation of mixed-bed demincralizer during the shutdown period of a pressurized water reactor (PWR). In the effect of the form of cation resins on the removal capacity of metal ions, the performance of a $H^+$-form resin was about 6% higher than that of a $Li^+$-form resin. Mixed-bed of cation and anion resins in comparison with nonmixed-bed of them, had no affected on the removal capacity of metal ions but very slightly increased the slope of breakthrough curves of metal ions. In the effect related to acidic-oxidizing conditions of the coolant, the addition of boric acid very slightly decreased the slope of breakthrough curves of metal ions, while the addition of hydrogen peroxide slightly decreased the removal capacity of metal ions.

  • PDF

Enhanced ion-exchange properties of clinoptilolite to reduce the leaching of nitrate in soil

  • Kabuba, John
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ion-exchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 - 30, 30 - 90, and 90 - 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3- were investigated. The results showed that an initial concentration of 25 mg L-1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 ℃ are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.