DOI QR코드

DOI QR Code

Ion Exchange Membrane for Desalination by Electrodialysis Process: A Review

전기투석법에 의한 담수화용 이온교환막: 총설

  • Sarsenbek, Assel (Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Rajkumar, Patel (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 살센벡 아샐 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2022.04.05
  • Accepted : 2022.04.22
  • Published : 2022.04.30

Abstract

It is a global challenge to fulfill the demand for clean water at an affordable cost to all the strata of the population. Desalination of seawater as well as brackish water by the membrane separation process is a well-established and cost-efficient method. However, there is still inherent problem of membrane fouling, disposal of the reject as well as a capital-intensive process. While electrodialysis (ED) is a membrane-based separation process in which a driving force is the potential difference. The advantages of ED process are excellent efficiency and low operation cost. Ion exchange membrane (IEM) used in the ED process needs to have higher chemical and thermal stability along with excellent mechanical strength for long-term use without losing its efficiency. The ion exchange capacity of the ED membrane is largely dependent on the conductivity of IEMs. In this review, the modification strategy of the pristine membrane to enhance the stability and ion conductivity of cation exchange membrane (CEM) and anion exchange membrane (AEM) is discussed.

모든 인구 계층에 저렴한 비용으로 깨끗한 물의 수요를 충족시키는 것은 해결해야 할 세계적인 문제이다. 막 분리 공정을 통한 해수 및 기수의 탈염은 효율이 높고 확립된 방법이다. 그러나 막 분리 공정은 막 오염, 제거된 오염물의 처리, 그리고 자본집약적 공정이라는 본질적인 문제가 있다. 전기투석은 전위차가 구동력인 막 기반 분리 공정이다. 전기투석막의 장점은 뛰어난 효율과 저렴한 운영 비용이다. 전기투석공정에서 사용되는 이온교환막은 장기간 효율을 잃지 않기 위해 내화학성과 내열성, 그리고 기계적 안정성이 필요하다. 이 때, 전기투석막의 이온교환용량은 이온교환막의 전도도에 따라 크게 달라진다. 본 리뷰에서는 이온 전도도과 안정성을 향상시키기 위한 양이온 교환막과 음이온 교환막의 개조를 중점적으로 논의하였다.

Keywords

References

  1. H. M. Nur, B. Yuzer, M. I. Aydin, S. Aydin, A. Ongen, and H. Selcuk, "Desalination and fate of nutrient transport in domestic wastewater using electrodialysis membrane process", Desalin. Water Treat., 172, 323 (2019). https://doi.org/10.5004/dwt.2019.24984
  2. J. Cizek, P. Cvejn, J. Marek, and D. Tvrznik, "Desalination performance assessment of scalable, multi-stack ready shock electrodialysis unit utilizing anion-exchange membranes", Membranes, 10, 1 (2020).
  3. G. J. Doornbusch, M. Bel, M. Tedesco, J. W. Post, Z. Borneman, and K. Nijmeijer, "Effect of membrane area and membrane properties in multi-stage electrodialysis on seawater desalination performance", J. Membr. Sci., 611, 118303 (2020). https://doi.org/10.1016/j.memsci.2020.118303
  4. L. Gurreri, A. Filingeri, M. Ciofalo, A. Cipollina, M. Tedesco, A. Tamburini, and G. Micale, "Electrodialysis with asymmetrically profiled membranes: Influence of profiles geometry on desalination performance and limiting current phenomena", Desalination, 506, 115001 (2021). https://doi.org/10.1016/j.desal.2021.115001
  5. S. K. Patel, M. Qin, W. S. Walker, and M. Elimelech, "Energy efficiency of electro-driven brackish water desalination: electrodialysis significantly outperforms membrane capacitive deionization", Environ. Sci. Technol., 54, 3663 (2020). https://doi.org/10.1021/acs.est.9b07482
  6. Y. Liu, J. Wang, SignificantlyL. Wang, "An energy-saving "nanofiltration/electrodialysis with polarity reversal (NF/EDR)" integrated membrane process for seawater desalination. Part III. Optimization of the energy consumption in a demonstration operation", Desalination, 452, 230 (2019). https://doi.org/10.1016/j.desal.2018.11.015
  7. A. H. M. G. Hyder, B. A. Morales, M. A. Cappelle, S. J. Percival, L. J. Small, E. D. Spoerke, S. B. Rempe, and W. S. Walker, "Evaluation of electrodialysis desalination performance of novel bioinspired and conventional ion exchange membranes with sodium chloride feed solutions", Membranes, 11, 217 (2021). https://doi.org/10.3390/membranes11030217
  8. J-H. Kim, S. Ryu, and S-H. Moon, "The fabrication of ion exchange membrane and its application to energy systems", Membr. J., 30, 79 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.79
  9. W. Meng, G. Wang, M. Zhang, D. Wang, N. Song, Y. Lei, J. Cheng, W. Qu, and S. Lee, "Generation of acid-base by bipolar membrane electrodialysis process during desalination of pesticide containing wastewater", Desalin. Water Treat., 217, 91 (2021). https://doi.org/10.5004/dwt.2021.26806
  10. B. Wei, J. Pan, J. Feng, C. Chen, S. Liao, Y. Yu, and X. Li, "Highly conductive and permselective anion exchange membranes for electrodialysis desalination with series-connected dications appending flexible hydrophobic tails", Desalination, 474, 114184 (2020). https://doi.org/10.1016/j.desal.2019.114184
  11. B. Wei, J. Feng, C. Chen, S. Zhong, S. Liao, Y. Yu, and X. Li, "Highly permselective tadpole-type ionic anion exchange membranes for electrodialysis desalination", J. Membr. Sci., 600, 117861 (2020). https://doi.org/10.1016/j.memsci.2020.117861
  12. R. A. Tufa, Y. Noviello, G. Di Profio, F. Macedonio, A. Ali, E. Drioli, E. Fontananova, K. Bouzek, and E. Curcio, "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination", Appl. Energy, 253, 113551 (2019). https://doi.org/10.1016/j.apenergy.2019.113551
  13. S. Zhong, H. Tie, S. Liao, and X. Li, "Low energy cost high electrodialysis performance anion-exchange membranes for desalination", Desalin. Water Treat., 174, 53 (2020). https://doi.org/10.5004/dwt.2020.24853
  14. J. Choi, Y. Oh, S. Chae, and S. Hong, "Membrane capacitive deionization-reverse electrodialysis hybrid system for improving energy efficiency of reverse osmosis seawater desalination", Desalination, 462, 19 (2019). https://doi.org/10.1016/j.desal.2019.04.003
  15. C. Li, M. Luo, J. Cao, H. He, and M. Xu, "Studies on textile effluent for desalination using electrodialysis and its membrane fouling analysis", Desalin. Water Treat., 185, 27 (2020). https://doi.org/10.5004/dwt.2020.25433
  16. D. Seok, Y. Kim, and H. Sohn, "Synthesis of Fe3O4 porous Carbon Composite for Efficient Cu2+ Ions Removal", Membr. J., 29, 308 (2019) 308-313. https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.308
  17. W. Mabrouk, R. Lafi, J. F. Fauvarque, A. Hafiane, and C. Sollogoub, "New ion exchange membrane derived from sulfochlorated polyether sulfone for electrodialysis desalination of brackish water", Polym. Adv. Technol., 32, 304 (2021). https://doi.org/10.1002/pat.5086
  18. M. Roman, L. Gutierrez, L. H. Van Dijk, M. Vanoppen, J. W. Post, B. A. Wols, E. R. Cornelissen, and A. R. D. Verliefde, "Effect of pH on the transport and adsorption of organic micro-pollutants in ion-exchange membranes in electrodialysis-based desalination", Sep. Purif. Technol., 252, 117487 (2020). https://doi.org/10.1016/j.seppur.2020.117487
  19. W. Tian, X. Wang, C. Fan, and Z. Cui, "Optimal treatment of hypersaline industrial wastewater via bipolar membrane electrodialysis", ACS Sustainable Chem. Eng., 7, 12358 (2019). https://doi.org/10.1021/acssuschemeng.9b01778
  20. A. Alabi, L. Cseri, A. Al Hajaj, G. Szekely, P. Budd, and L. Zou, "Graphene-PSS/l-DOPA nano-composite cation exchange membranes for electrodialysis desalination", Environ. Sci. Nano, 7, 3108 (2020). https://doi.org/10.1039/D0EN00496K
  21. E. Jashni, S. M. Hosseini, J. N. Shen, and B. Van der Bruggen, "Electrochemical characterization of mixed matrix electrodialysis cation exchange membrane incorporated with carbon nanofibers for desalination", Ionics, 25, 5595 (2019). https://doi.org/10.1007/s11581-019-03068-4
  22. G. Ma, X. Xu, M. Tesfai, Y. Zhang, H. Wang, and P. Xu, "Nanocomposite cation-exchange membranes for wastewater electrodialysis: organic fouling, desalination performance, and toxicity testing", Sep. Purif. Technol. 275, 119217 (2021). https://doi.org/10.1016/j.seppur.2021.119217
  23. Y. Liu, J. Liao, G. Peng, C. Dong, S. Yang, and J. Shen, "Poly(vinyl chloride)-based anion-exchange membrane with high-antifouling potential for electrodialysis application", ACS Appl. Polymer Mat., 3, 2529 (2021). https://doi.org/10.1021/acsapm.1c00121
  24. Y. Liu and J. Wang, "Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis", J. Membr. Sci., 596, 117591 (2020). https://doi.org/10.1016/j.memsci.2019.117591
  25. J. Pan, B. Wei, H. Xie, J. Feng, S. Liao, X. Li, and Y. Yu, "Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination", Sep. Purif. Technol., 265, 118526 (2021). https://doi.org/10.1016/j.seppur.2021.118526
  26. G. Peng, C. Zhu, J. Liao, X. Gao, L. Hao, A. Sotto, and J. Shen, "A two-step strategy for the preparation of anion-exchange membranes based on poly (vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination", Polymer, 218, 123508 (2021). https://doi.org/10.1016/j.polymer.2021.123508
  27. A. K. Singh, S. Kumar, M. Bhushan, and V. K. Shahi, "High performance cross-linked dehydrohalogenated poly (vinylidene fluoride-co-hexafluoro propylene) based anion-exchange membrane for water desalination by electrodialysis", Sep. Purif. Technol., 234, 116078 (2020). https://doi.org/10.1016/j.seppur.2019.116078
  28. V. Yadav, N. H. Rathod, J. Sharma, and V. Kulshrestha, "Long side-chain type partially cross-linked poly (vinylidene fluoride-co-hexafluoropropylene) anion exchange membranes for desalination via electrodialysis", J. Membr. Sci., 622, 119034 (2021). https://doi.org/10.1016/j.memsci.2020.119034
  29. S. Yu, J. Zhu, J. Liao, H. Ruan, A. Sotto, and J. Shen, "Homogeneous trimethylamine-quaternized polysulfone-based anion exchange membranes with crosslinked structure for electrodialysis desalination", Sep. Purif. Technol., 257, 117874 (2021). https://doi.org/10.1016/j.seppur.2020.117874