• Title/Summary/Keyword: Ion Composition

Search Result 790, Processing Time 0.029 seconds

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method (Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.

Viscosities of $LaCl_3-NaCl$ Binary Melts ($LaCl_3-NaCl$ 2성분계 용융염의 점도)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.282-287
    • /
    • 2006
  • Viscosities of $LaCl_3-NaCl$ binary melts were measured by the capillary method over the range of their liquidus temperatures to about 1200K. The cell constant were determined by using pure water. The results obtained are summerized as follows: Viscosities were decreased with the content of NaCl for all over the composition range of binary melts. Composition - viscosity relation for the binary melts show a non-linear from the additivity line and the deviations shows a maximum at about 60 mol% NaCl. This suggests the existence of the complex ion of $LaCl_4^-$ in the melt. Activation energy for viscous flow of the binary melts decrease monotonously with the increasing content of NaCl.

Electric Conductivities of LaC $l_3$-LiCl Binary Melts (용융 LaC $l_3$-LiCl 2성분계 혼합염의 전도도)

  • Kim Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.301-306
    • /
    • 2004
  • Electric Conductivities of $LaCl_3$-LiCl binary melts have been measured by the Kohlausch bridge method over the range of their liquidus temperatures to about 1200 K. The electric conductivity increases with the content of LiCl for all over the composition range of binary melts. Composition dependence of the electric conductivity and molar conductivity for the binary melt shows a non-linear relation from the additivity line, and the deviations displays a maximum value at about 60 mol % LiCl. This suggest the existence of the complex ion of$ LaCl_{4}^{-}$ in the melt. Activation energy for electric conductivity of the binary melts decrease monotonously with increasing content of LiCl.l.

Titanium Oxide Film : A New Biomaterial For Artificial Heart Valve Prepared by Ion Beam Enhanced Deposition

  • Liu, Xianghuai;Zhang, Feng;Zheng, Zhihong;Huang, Nan
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.1-15
    • /
    • 1997
  • Titanium oxide films were prepared by ion beam enhanced deposition where the films were synthesized by deposition titianium atoms and simultaneously bombarding with xenon ion beam at an energy of 40 keV in an $O_2$ environ,ent. Structure and composition of titanium oxide films were investigated by X-ray Doffractopm (XRD) Ritjerfprd Backscattering Spectroscopy (RBS) and X-ray Diffraction(XRD) Rutherford Backscattering Spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS) The results show that thestructure of the prepared films exhibit a rutile phase structure wit high(200) orientation and the O/Ti ratio of the titanium oxide films was about 2:1 XPS anlysis shows that $Ti^{2+},Ti^{3+}\;and\;Ti^{4+}$ chemical states exist on the titanium oxide films. the blood compatibility of the titanium oxide films was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide films improved significantly and better than that of LTI-carbon which was widely used to fabricate artificial heart valve.

  • PDF

Degradation of Ion-exchange Soda-lime Glasses Due to a Thermal Treatment (이온강화 소다라임 유리의 열처리에 따른 강화 풀림현상)

  • Hwang, Jonghee;Lim, Tae-Young;Lee, Mi Jai;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.23-27
    • /
    • 2015
  • Recently, the use of ion-exchange strengthened glass has increased sharply, as it is now used as the cover glass for smart phone devices. Therefore, many researchers are focusing on methods that can be used to strengthen ion-exchange glass. However, research on how the improved strength can be maintained under thermal environment of device manufacturing is still insufficient. We tested the degradation of the characteristics of ion-exchange soda-lime glass samples, including their surface compressive stress characteristics, the depth of the ion-exchange layer (DOL), flexural strength, hardness, and modulus of rupture (MOR) values. Degradation of the characteristics of the ion-exchange glass samples occurred when they were heat-treated at a temperature that exceeded $350^{\circ}C$.

Characterization of Molecular Composition of Bacterial Melanin Isolated from Streptomyces glaucescens Using Ultra-High-Resolution FT-ICR Mass Spectrometry

  • Choi, Mira;Choi, A Young;Ahn, Soo-Yeon;Choi, Kwon-Young;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • In this study, the chemical composition of bacterial melanin isolated from the Streptomyces glaucescens strain was elucidated by ultra-high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Ultra-high-resolution mass profiles of the microbial melanin product were acquired using a 15 Tesla FT-ICR mass spectrometer in positive and negative ion modes via electrospray ionization to obtain more complete descriptions of the molecular compositions of melanin-derived organic constituents. A mass resolving power of 500,000 (at m/z 400) was achieved for all spectra while collecting 400 scans per sample with a 4 M transient. The results of this analysis revealed that the melanin pigment isolated from S. glaucescens predominantly exhibits CHON and CHO species, which belong to the proteins class of compounds, with the mean C/O and C/N ratios of 4.3 and 13.1, thus suggesting that the melanin could be eumelanin. This analytical approach could be utilized to investigate the molecular compositions of a variety of natural or synthetic melanins. The compositional features of melanins are important for understanding their formation mechanisms and physico-chemical properties.

Preparation of Crystalline $Si_{1-x}Ge_x$ Thin Films by Pulsed Ion-Beam Evaporation

  • Yang, Sung-Chae
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.181-184
    • /
    • 2004
  • Thin films of single phase, polycrystalline silicon germanium (Si$_{1-x}$ Ge$_{x}$) were prepared by ion-beam evaporation (IBE) using Si-Ge multi-phase targets. After irradiation of the targets by a pulsed light ion beam with peak energy of 1 MV, 450 and 480 nm thick films were deposited on Si single crystal and quartz glass substrates, respectively. From XRD analysis, the thin films consisted of a single phase Si$_{1-x}$ Ge$_{x}$, whose composition is close to those of the targets.rgets.

Surface Modification of Aluminum by Nitrogen-Ion Implantation

  • Kang Hyuk-Jin;Ahn Sung-Hoon;Lee Jae-Sang;Lee Jae-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2006
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. Ion implantation is a novel surface modification technology that enhances the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into AC7A aluminum substrates which would be used as molds for rubber molding. The composition of nitrogenion implanted aluminum and distribution of nitrogen ions were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimen was higher than that of untreated specimen. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that implantation of nitrogen ions enhances the mechanical properties of aluminum mold.

Treatment of Nitrogen Oxides in Ambient Air using a Ion-Selective Electrode (대기중 질산화물의 이온 선택성 전극에 의한 처리)

  • 안형환;우인성;강안수;이영순;김윤선
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.40-49
    • /
    • 1990
  • For the determination of polluant NOx in ambient air, nitrate ion-selective electrode(ISE) was made. To comparison of NOx in each method, the nitrate-ISE, NEBA, Orion electrode were used to determinee NOx in ambient air. In this work, the concentration of NOx in ambient air was average 0.06ppm. The results were good agreement with those obtained by each method within a relative error of 3%, Absorbing efficiency of nitrogen oxides in ambient air was good for Alkali solution. The determination of nitrogen oxides in ambient air using the Aliquat 336N-PVC membrane electrode was one of the useful method. The best characteristics of the Aliquat 336N-PVC me,mbrane electrode were obtained with the ion-exchanger concentration level of 6.5-9.1 percent by weight. The optimal membrane composition, was 9.09wt.% of ion-exchanger, 30.95wt.% of PVC, 60.6wt.% of plasticizer (DBP), and 0.5mm of thickness. Under the above condition, the electrode approached the Nernstian slope most closely, and the linear response ranges produced the best results.

  • PDF