• Title/Summary/Keyword: IoT sensor networks

Search Result 122, Processing Time 0.021 seconds

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Performance of Battery-less Backscatter Sensor Networks Based on Good Channel Sensing (채널 센싱 기반의 무전원 백스케터 센서 네트워크의 성능)

  • Hong, Seung Gwan;Sim, Isaac;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • In this paper, we studied a spectrum sensing algorithm for the efficient use of available spectrum in RF energy harvesting system combined with backscatter communication. We first looked for white spaces and then, selected low fading channel among white spaces using spectrum sensing algorithm at a transmitter. The transmitter employing the algorithm alleviates signal interference and improves the received signal strength indication through signals transmitted by low fading channel. The proposed RF energy harvesting system combined with backscatter communication is used the transmitter employing the algorithm. As a result of computer simulations, we can find the performance improvements of RF energy harvesting, BER of backscatter communication, and the received signal strength per distance of backscatter tag.

Machine-to-Machine Communications: Architectures, Standards and Applications

  • Chen, Min;Wan, Jiafu;Li, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.480-497
    • /
    • 2012
  • As a new business concept, machine-to-machine (M2M) communications are born from original telemetry technology with the intrinsic features of automatic data transmissions and measurement from remote sources typically by cable or radio. M2M includes a number of technologies that need to be combined in a compatible manner to enable its deployment over a broad market of consumer electronics. In order to provide better understanding for this emerging concept, the correlations among M2M, wireless sensor networks, cyber-physical systems (CPS), and internet of things are first analyzed in this paper. Then, the basic M2M architecture is introduced and the key elements of the architecture are presented. Furthermore, the progress of global M2M standardization is reviewed, and some representative applications (i.e., smart home, smart grid and health care) are given to show that the M2M technologies are gradually utilized to benefit people's life. Finally, a novel M2M system integrating intelligent road with unmanned vehicle is proposed in the form of CPS, and an example of cyber-transportation systems for improving road safety and efficiency are introduced.

Energy efficient watchman based flooding algorithm for IoT-enabled underwater wireless sensor and actor networks

  • Draz, Umar;Ali, Tariq;Zafar, Nazir Ahmad;Alwadie, Abdullah Saeed;Irfan, Muhammad;Yasin, Sana;Ali, Amjad;Khattak, Muazzam A. Khan
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.414-426
    • /
    • 2021
  • In the task of data routing in Internet of Things enabled volatile underwater environments, providing better transmission and maximizing network communication performance are always challenging. Many network issues such as void holes and network isolation occur because of long routing distances between nodes. Void holes usually occur around the sink because nodes die early due to the high energy consumed to forward packets sent and received from other nodes. These void holes are a major challenge for I-UWSANs and cause high end-to-end delay, data packet loss, and energy consumption. They also affect the data delivery ratio. Hence, this paper presents an energy efficient watchman based flooding algorithm to address void holes. First, the proposed technique is formally verified by the Z-Eves toolbox to ensure its validity and correctness. Second, simulation is used to evaluate the energy consumption, packet loss, packet delivery ratio, and throughput of the network. The results are compared with well-known algorithms like energy-aware scalable reliable and void-hole mitigation routing and angle based flooding. The extensive results show that the proposed algorithm performs better than the benchmark techniques.

Quantum Communication Technology for Future ICT - Review

  • Singh, Sushil Kumar;Azzaoui, Abir El;Salim, Mikail Mohammed;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1459-1478
    • /
    • 2020
  • In the last few years, quantum communication technology and services have been developing in various advanced applications to secure the sharing of information from one device to another. It is a classical commercial medium, where several Internet of Things (IoT) devices are connected to information communication technology (ICT) and can communicate the information through quantum systems. Digital communications for future networks face various challenges, including data traffic, low latency, deployment of high-broadband, security, and privacy. Quantum communication, quantum sensors, quantum computing are the solutions to address these issues, as mentioned above. The secure transaction of data is the foremost essential needs for smart advanced applications in the future. In this paper, we proposed a quantum communication model system for future ICT and methodological flow. We show how to use blockchain in quantum computing and quantum cryptography to provide security and privacy in recent information sharing. We also discuss the latest global research trends for quantum communication technology in several countries, including the United States, Canada, the United Kingdom, Korea, and others. Finally, we discuss some open research challenges for quantum communication technology in various areas, including quantum internet and quantum computing.

Development of a Deep Learning Prediction Model to Recognize Dangerous Situations in a Gas-use Environment (가스 사용 환경에서의 위험 상황 인지를 위한 딥러닝 예측모델 개발)

  • Kang, Byung Jun;Cho, Hyun-Chan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.132-135
    • /
    • 2022
  • Recently, with the development of IoT communication technology, products and services that detect and inform the surrounding environment under the name of smart plugs are being developed. In particular, in order to prepare for fire or gas leakage accidents, products that automatically close and warn when abnormal symptoms occur are used. Most of them use methods of collecting, analyzing, and processing information through networks. However, there is a disadvantage that it cannot be used when the network is temporarily in a failed state. In this paper, sensor information was analyzed using deep learning, and a model that can predict abnormal symptoms was learned in advance and applied to MCU. The performance of each model was evaluated by developing firmware that can judge and process on its own regardless of network and applying a predictive model to the MCU after 3 to 120 seconds.

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

A Study on Data Gata Gateway for Indoor Location Detection and Its Upload (실내 위치정보 확인 시스템 및 데이터 게이트웨이 구현에 대한 연구)

  • Cho, Youngseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.63-69
    • /
    • 2016
  • Although the previous information technologies had been used for the quick and accurate processing of work, At present, however, as the combination with the Internet, the IOT(Internet-of-Things) era in which the diverse pieces of information are collected and handled through the sensor networks is in progress. Among these application fields of the IoT, the indoors position identification technology has been developing in the direction of providing the position information in the buildings of which the lengths and the interiors are complicated and in the direction of providing the various pieces of information and others of the like to the nearby customers. In this paper, we proposed an indoors position identification system that detects the patrol positions of the prison officers in the correctional facilities and in the prisons by using the ultrasonic waves, that transmits these to the control system and the data gateway, and that transmits the detected data. The Indoors Positioning identification System is organized with the tags for recognizing the positions that transmit the ultrasonic signal, ultrasonic receiver and data gateway. And the indoors position information data were transmitted to the management system through the data gateway. We evaluated the transmission error, by changing the distance of the proposed system for location recognition tag and the receiver, As a result, we found out that, when the transmission distance was 10 cm or less, the errors occurred in the form of the distortions. And when it was 110 cm or more, the transmission errors occurred due to the propagation diminutions of the ultrasonic wave signals. And when the transmission distance was from 10 cm to 100 cm, it was shown that the proposed system was possible without any errors.

Environment Adaptive Emergency Evacuation Route GUIDE through Digital Signage Systems

  • Lee, Dongwoo;Kim, Daehyun;Lee, Junghoon;Lee, Seungyoun;Hwang, Hyunsuk;Mariappan, Vinayagam;Lee, Minwoo;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.90-97
    • /
    • 2017
  • Nowadays, the most of commercial buildings are build-out with complex architecture and decorated with more complicated interiors of buildings so establishing intelligible escape routes becomes an important case of fire or other emergency in a limited time. The commercial buildings are already equipped with multiple exit signs and these exit signs may create confusion and leads the people into different directions under emergency. This can jeopardize the emergency situation into a chaotic state, especially in a complex layout buildings. There are many research focused on implementing different approached to improve the exit sign system with better visual navigating effects, such as the use of laser beams, the combination of audio and video cues, etc. However the digital signage system based emergency exit sign management is one of the best solution to guide people under emergency situations to escape. This research paper, propose an intelligent evacuation route GUIDE that uses the combination centralized Wireless Sensor Networks (WSN) and digital signage for people safety and avoids dangers from emergency conditions. This proposed system applies WSN to detect the environment condition in the building and uses an evacuation algorithm to estimate the safe route to escape using the sensor information and then activates the signage system to display the safe evacuation route instruction GUIDE according to the location the signage system is installed. This paper presented the prototype of the proposed signage system and execution time to find the route with future research directions. The proposed system provides a natural intelligent evacuation route interface for self or remote operation in facility management to efficiently GUIDE people to the safe exit under emergency conditions.

AQ-NAV: Reinforced Learning Based Channel Access Method Using Distance Estimation in Underwater Communication (AQ-NAV: 수중통신에서 거리 추정을 이용한 강화 학습 기반 채널 접속 기법)

  • Park, Seok-Hyeon;Shin, Kyungseop;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.33-40
    • /
    • 2020
  • This work tackles the problem of conventional reinforcement learning scheme which has a relatively long training time to reduce energy consumption in underwater network. The enhanced scheme adjusts the learning range of reinforcement learning based on distance estimation. It can be reduce the scope of learning. To take account the fact that the distance estimation may not be accurate due to the underwater wireless network characteristics. this research added noise in consideration of the underwater environment. In simulation result, the proposed AQ-NAV scheme has completed learning much faster than existing method. AQ-NAV can finish the training process within less than 40 episodes. But the existing method requires more than 120 episodes. The result show that learning is possible with fewer attempts than the previous one. If AQ-NAV will be applied in Underwater Networks, It will affect energy efficiency. and It will be expected to relieved existing problem and increase network efficiency.