• Title/Summary/Keyword: IoT module

Search Result 186, Processing Time 0.034 seconds

Self-adaptive IoT Software Platform for Interoperable Standard-based IoT Systems (협업가능 표준기반 IoT 시스템을 위한 자가적응 IoT 소프트웨어 플랫폼 개발)

  • Sung, Nak-Myoung;Yun, Jaeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2017
  • In this paper, we present a self-adaptive software platform that enables an IoT gateway to perform autonomous operation considering IoT devices connected each other in resource-constrained environments. Based on the oneM2M device software platform publicly available, we have designed an additional part, called SAS (self-adaptive software) consisting of MAM (memory-aware module), NAM (network-aware module), BAM (battery-aware module), DAM (data-aware module), and DH (decision handler). A prototype system is implemented to show the feasibility of the proposed self-adaptive software architecture. Our proposed system demonstrates that it can adaptively adjust the operation of gateway and connected devices to their resource conditions under the desired service scenarios.

Development of BLE Sensor Module based on Open Source for IoT Applications (IoT 응용을 위한 오픈 소스 기반의 BLE 센서 모듈 개발)

  • Ryu, Dae-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.419-424
    • /
    • 2015
  • The era of IoT in which all objects are intelligent and are connected to the Internet has been started. In order to establish and activate an IoT eco system, open services platform is very important. In this paper, we developed a BLE sensor module as a component of the open service platform based on the IoT and the open source hardware Blutooth4.0. To verify the functionality and performance of the developed BLE sensor module was built to evaluate the performance of the test environment.

GreenIoT Architecture for Internet of Things Applications

  • Ma, Yi-Wei;Chen, Jiann-Liang;Lee, Yung-Sheng;Chang, Hsin-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.444-461
    • /
    • 2016
  • A power-saving mechanism for smartphone devices is developed by analyzing the features of data that are received from Internet of Things (IoT) sensors devices to optimize the data processing policies. In the proposed GreenIoT architecture for power-saving in IoT, the power saving and feedback mechanism are implemented in the IoT middleware. When the GreenIoT application in the power-saving IoT architecture is launched, IoT devices collect the sensor data and send them to the middleware. After the scanning module in the IoT middleware has received the data, the data are analyzed by a feature evaluation module and a threshold analysis module. Based on the analytical results, the policy decision module processes the data in the device or in the cloud computing environment. The feedback mechanism then records the power consumed and, based on the history of these records, dynamically adjusts the threshold value to increase accuracy. Two smart living applications, a biomedical application and a smart building application, are proposed. Comparisons of data processed in the cloud computing environment show that the power-saving mechanism with IoT architecture reduces the power consumed by these applications by 24% and 9.2%.

Implement IoT device Authentication System (IoT 단말 인증 시스템 구현)

  • Kang, Dong-Yeon;Jeon, Ji-Soo;Han, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.344-345
    • /
    • 2022
  • ogy is being used in many fields, such as smart farms, smart oceans, smart homes, and smart energy. Various IoT terminals are used for these IoT services. Here, IoT devices are physically installed in various places. A malicious attacker can access the IoT service using an unauthorized IoT device, access unauthorized important information, and then modify it. In this study, to solve these problems, we propose an authentication system for IoT devices used in IoT services. The IoT device authentication system proposed in this study consists of an authentication module mounted on the IoT device and an authentication module of the IoT server. If the IoT device authentication system proposed in this study is used, only authorized IoT devices can access the service and access of unauthorized IoT devices can be denied. Since this study proposes only the basic IoT device authentication mechanism, additional research on additional IoT device authentication functions according to the security strength is required.IoT technol

  • PDF

Development of Wireless IoT Sensors for Individual Photovoltaic Module Monitoring (태양광 모듈 개별 모니터링을 위한 무선 IoT센서)

  • Park, Jongsung;Kim, Changheon;Lee, Jiwon;Kim, Jihyun;Yoo, Sanghyuk;Yang, Bum Seung
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.106-109
    • /
    • 2021
  • In order to perform photovoltaic (PV) operation and management (O&M) efficiently, individual PV module monitoring is becoming more important. In this research, we developed wireless IoT sensor which can monitor individual photovoltaic modules. This IoT sensor can detect the output voltage, current and module temperature of individual modules and provide monitored data by wireless communication. Measured voltage error was 1.23%, and it shows 16.6 dBM, 0.42sec and 7.1 mA for voltage, transmittance output, response time and mean power consumption, respectively. IoT sensors were demonstrated in the test field with real climate environment condition and each of 5 sensors showed precise results of voltage, current and temperature. Also, sensors were compared with commercial power-optimizers and showed result difference within 5%.

Application Scenario of Integrated Development Environment for Autonomous IoT Applications based on Neuromorphic Architecture (뉴로모픽 아키텍처 기반 자율형 IoT 응용 통합개발환경 응용 시나리오)

  • Park, Jisu;Kim, Seoyeon;Kim, Hoinam;Jeong, Jaehyeok;Kim, Kyeongsoo;Jung, Jinman;Yun, Young-Sun
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • As the use of various IoT devices increases, the importance of IoT platforms is also rising. Recently, artificial intelligence technology is being combined with IoT devices, and research applying a neuromorphic architecture to IoT devices with low power is also increasing. In this paper, an application scenario is proposed based on NA-IDE (Neuromorphic Architecture-based autonomous IoT application integrated development environment) with IoT devices and FPGA devices in a GUI format. The proposed scenario connects a camera module to an IoT device, collects MNIST dataset images online, recognizes the collected images through a neuromorphic board, and displays the recognition results through a device module connected to other IoT devices. If the neuromorphic architecture is applied to many IoT devices and used for various application services, the autonomous IoT application integrated development environment based on the neuromorphic architecture is expected to emerge as a core technology leading the 4th industrial revolution.

Development of an IoT System Based on the oneM2M Communication Protocol (oneM2M 통신 프로토콜 기반 사물인터넷 시스템 개발)

  • Park, Kee-Hyun;Lee, Jong-Hwi;Woo, Min-Woo;Park, Joon-Suu
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.41-49
    • /
    • 2016
  • In this paper, an IoT system which is increasingly popular in these days is developed. Among various international standards on the area, one M2M communication protocol is used in the system. The 0neM2M-based IoT system consists of ADN-AE modules and CSE modules. The ADN-AE module provides applications of various services. It also monitors a CSE module. The CES module is a platform that provides common services which should be provided to various AEs in an IoT system. The CSE module consists of a Network Manager module, a Message Handler module, and a Resource Manager module. The Network Manager module controls oneM2M communication and data flow in the system. The Message Handler module processes transmitted messages and the Resource Manager module manages the Resource Tree. The resource tree stores information of the objects to be managed in the system. Also, internal data flow and protocol mapping in the modules are explained.

S-mote: SMART Home Framework for Common Household Appliances in IoT Network

  • Park, Dong-Min;Kim, Seong-Kyu;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.449-456
    • /
    • 2019
  • SMART home is one of the most popular applications of Internet-of-Things (IoT) technologies, which is expanding in terms of range of applications. SMART home technology provides convenience at home by connecting household appliances to a single network, control, and management. However, many general home appliances do not support the network functions yet; hence, enjoying such convenient technology could be difficult, and it could be expensive in the beginning to build the framework. In addition, even though products with SMART home technologies are purchased, the control systems could differ from device to device. Thus, in this paper, we propose a SMART home framework, called an S-mote that can operate all the IoT functions in a single application by adding an infrared or radio frequency module to general home appliances. The proposed framework is analyzed using four types of performance tests by five evaluators. The results of the experiment show that the SMART home environment was implemented successfully and that it functions appropriately, without any operational issues, with various home appliances, including the latest IoT devices, and even those equipped with an infrared or radio frequency module.

Design and implementation of IoT based controllers and communication module interfaces for stand-alone solar system

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.129-135
    • /
    • 2019
  • This paper is part of research and development for stand-alone solar system without commercial power supply. It implements firmware of controller for operation of stand-alone solar system by applying IoT technology and also develops communication modules that allow multiple solar lamps to send and receive data through wireless network. The controller of the developed stand-alone solar system can effectively charge the power generated by the solar module, taking into account the battery's charge and discharge characteristics. It also has the advantage of attaching wireless communication modules to solar lamp posts to establish wireless communication networks without incurring communication costs. In addition, by establishing IoT gateway middleware platform for each installation site, it forms a foundation to operate multiple solar lamp posts into multiple clusters. And, it is expected that the data collected in each cluster will be used to enable configuration and control of operational information, thereby inducing convenience and efficiency of remote operation and management.

Study of IoT Module Package Design Optimization for Drop Testing by Drone (IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구)

  • Jo, Eunsol;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.63-67
    • /
    • 2021
  • In order to detect fires that may not be visible to the naked eye, an IoT module that uses changes in Carbon dioxide (CO2) levels and temperature to effectively identify ambers (dying flames) was developed. Finite element analysis was then used to optimize the packaging for this module. Given the nature of ambers, the low power long range LoRa (Long Range) technology was used in the development of this module. To protect the module, a number of packages were designed, and comparative analysis performed on the stress generated when they fall. The results of which show that Model C showed the lowest stress. In addition, unlike other models in which stress concentration was predicted in the module mounting part of the package, in this model the stress concentration phenomenon was predicted in the wing part. It was therefore determined that this approach is ideal for protecting the internal module, and a package to which this was applied was manufactured.