• Title/Summary/Keyword: IoT healthcare

Search Result 162, Processing Time 0.042 seconds

A Study on Storing Node Addition and Instance Leveling Using DIS Message in RPL (RPL에서 DIS 메시지를 이용한 Storing 노드 추가 및 Instance 평준화 기법 연구)

  • Bae, Sung-Hyun;Yun, Jeong-Oh
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.590-598
    • /
    • 2018
  • Recently, interest in IoT(Internet of Things) technology, which provides Internet services to objects, is increasing. IoT offers a variety of services in home networks, healthcare, and disaster alerts. IoT with LLN(Low Power & Lossy Networks) feature frequently loses sensor node. RPL, the standard routing protocol of IoT, performs global repair when data loss occurs in a sensor node. However, frequent loss of sensor nodes due to lower sensor nodes causes network performance degradation due to frequent full path reset. In this paper, we propose an additional selection method of the storage mode sensor node to solve the network degradation problem due to the frequent path resetting problem even after selecting the storage mode sensor node, and propose a method of equalizing the total path resetting number of each instance.

Medical Information Security and Standard Technology On IoT Environment (IoT 환경의 의료 정보보호와 표준 기술)

  • Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2683-2688
    • /
    • 2015
  • Internet of Things(IoT) using a variety of technologies in combination provides a convenient, elevated range of services to users. IoT has been noted in combining the fields of medical service in particular. However, with the advent and growing of IoT, the more medical services are evolving, security problems caused by leakage of personal health information will become more serious. U-Health and medical devices, which deal mainly the personal health information, is required to a high level of privacy and security of health information. Therefore, the introduction of the IoT in the healthcare industry requires the medical information security as a prerequisite. This study analyzes security status and trend of IoT, personal medical information leakage cases, the health information protection measures in accordance with the life cycle of medical information, and the standardized protection technologies.

Enhancement of Semantic Interoper ability in Healthcare Systems Using IFCIoT Architecture

  • Sony P;Siva Shanmugam G;Sureshkumar Nagarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.881-902
    • /
    • 2024
  • Fast decision support systems and accurate diagnosis have become significant in the rapidly growing healthcare sector. As the number of disparate medical IoT devices connected to the human body rises, fast and interrelated healthcare data retrieval gets harder and harder. One of the most important requirements for the Healthcare Internet of Things (HIoT) is semantic interoperability. The state-of-the-art HIoT systems have problems with bandwidth and latency. An extension of cloud computing called fog computing not only solves the latency problem but also provides other benefits including resource mobility and on-demand scalability. The recommended approach helps to lower latency and network bandwidth consumption in a system that provides semantic interoperability in healthcare organizations. To evaluate the system's language processing performance, we simulated it in three different contexts. 1. Polysemy resolution system 2. System for hyponymy-hypernymy resolution with polysemy 3. System for resolving polysemy, hypernymy, hyponymy, meronymy, and holonymy. In comparison to the other two systems, the third system has lower latency and network usage. The proposed framework can reduce the computation overhead of heterogeneous healthcare data. The simulation results show that fog computing can reduce delay, network usage, and energy consumption.

Efficient Patient Information Transmission and Receiving Scheme Using Cloud Hospital IoT System (클라우드 병원 IoT 시스템을 활용한 효율적인 환자 정보 송·수신 기법)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • The medical environment, combined with IT technology, is changing the paradigm for medical services from treatment to prevention. In particular, as ICT convergence digital healthcare technology is applied to hospital medical systems, infrastructure technologies such as big data, Internet of Things, and artificial intelligence are being used in conjunction with the cloud. In particular, as medical services are used with IT devices, the quality of medical services is increasingly improving to make them easier for users to access. Medical institutions seeking to incorporate IoT services into cloud health care environment services are trying to reduce hospital operating costs and improve service quality, but have not yet been fully supported. In this paper, a patient information collection model from hospital IoT system, which has established a cloud environment, is proposed. The proposed model prevents third parties from illegally eavesdropping and interfering with patients' biometric information through IoT devices attached to the patient's body at hospitals in cloud environments that have established hospital IoT systems. The proposed model allows clinicians to analyze patients' disease information so that they can collect and treat diseases associated with their eating habits through IoT devices. The analyzed disease information minimizes hospital work to facilitate the handling of prescriptions and care according to the patient's degree of illness.

A Survey on Smart Internet of Things - Trend Issues, Cognitive Computing Frameworks (지능형 IoT에 대한 조사 - Cognitive Computing Frameworks, 트렌드 이슈)

  • Landry, Moungala Alban;Kabulo, Nday Sinai;Yum, Sun-Ho;Namgung, Jung-Il;Shin, Soo-Young;Park, Soo-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.604-607
    • /
    • 2018
  • From the last past decade, the Internet of Thing (IoT) area has attracted a lot of attention from researchers. It is said to be a promising technology with great impact in people life, since it redefines the relationship objects have with Human and between themselves. It allows objects to gather data from the real world and communicate with others through the internet. This enabled many opportunities for service providers, companies, factories, environmental monitoring, healthcare, smart cities, and soon. Therefore, today, IoT is densely used in various domains of life, and knows an exponential growth. However, although many advancements have been achieved, several challenges keep causing issues and still need to be overcome. This paper gives an overview on the current trend issues in IoT on which researchers are focusing. It's also explores different proposed frameworks to allow the application of cognitive computing as an integrated process of an Internet of things (IoT) systems, to bring a great advanced in the way machine may communicate with human and their surroundings. This is known as cognitive IoT (CIoT), which allows machines to produce a human-like behavior, then providing enhanced level of capabilities to IoT.

Design and Implementation of IoT based Urination Management System (사물인터넷 기반의 배뇨관리 시스템 설계 및 구현)

  • Lee, Hak-Jai;Lee, Kyung-Hoon;Kim, Young-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.209-218
    • /
    • 2017
  • Healthcare services can be provided through a number of independent service platforms for measurement of vital signs, diagnosis and prevention of diseases, and Information and communication technology(ICT) such as internet and mobile are converged to provide health information to users at anytime and anywhere, and it is in the center of the IoT(Internet of things). Accordingly, in this paper, we designed IoT based urination management system and evaluate the performance. A low - power Zigbee network was constructed for the configuration of the urination management system. The implemented capacitive diaper sensor was operable for the duration of 2,000 hours. We also built a database server using Raspberry Pi, a tiny embedded device, and stored the collected data to verify the data through an Android-based mobile application. The proposed urination management system can be utilized not only for the older patients, but also for the infants.

Glove Type Heart Rate Monitoring System Using Blood Flow Change (혈류량 변화를 이용한 장갑형 심박수 모니터링 시스템)

  • Han, Yun-Cheol;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.503-504
    • /
    • 2017
  • Recently, economic growth in the world has increased interest in healthy life, and the smart health care industry is growing. In the field of smart healthcare, wearable-type biometric information measurement technology has been highlighted due to the importance of IoT technology. The purpose of this study is to develop a wearable heart - rate monitoring system that can be applied to wearable health care and glove - type monitoring that enables convenient monitoring of heart rate during activity. For this purpose, a glove - type wearable health care system was developed and its performance was evaluated. Experimental results showed that the heartbeat monitoring was possible even in the presence of actual daily activities.

  • PDF

Applications and Issues of Medical Big Data (의료 빅데이터의 활용과 해결과제)

  • Woo, SungHee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.545-548
    • /
    • 2016
  • Big data is all data generated in the digital environment which has a variety of large and a short life cycle. The amount and type of data are becoming more and more produced on a larger scale, as a smart phone and the internet are popular, and consequently it has been converted into time for users to take advantage and extract only the valuable and useful data from the generated big data. Big data can also be applied to the medical industry and health sectors. It has created the synergy to be fused with ICT such as IoT, smart healthcare, and so on. However, there will be challenges like data security in order securely to use a meaningful and useful vast amounts of data. In this study, we analyze the future prospects of the healthcare, applications and issues of medical big data, and the expected challenges.

  • PDF

Smart Jewelry System for Health Management based on IoT (사물인터넷 기반 건강관리 스마트 주얼리 시스템)

  • Kang, Yun-Jeong;Yin, Li;Choi, DongOun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1494-1502
    • /
    • 2016
  • With the increasing availability of medical sensors and Internet of Things(IoT) devices for personal use, considering the interaction with users, it is planned to add intelligent function design to the fashionable jewelry, and develop composite multi-function intelligent jewelry through sensors identification. By means of IoT technology, while possessing communication function of intelligent jewelry, the function of intelligent jewelry can be expanded to the linkage network. In order to rapidly manage the mass data produced by intelligent jewelry sensors based on IoT, an intelligent jewelry system for health management is designed and an ontology model of intelligent jewelry system based on IoT is worked out. After the state of the services through the smart phone application is shown. The application provides a personalized service to the user and to determine the risk to show the guide lines according to the disease.

Design of Monitoring System based on IoT sensor for Health Management of an Elderly Alone

  • Hur, Hwa-La;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.81-87
    • /
    • 2020
  • In this paper, proposes a health status monitoring system for socially marginalized elderly households living alone. This system is implemented by collecting various PHR biometric signals and residential environment information through IoT devices. In addition, the company aims to establish a basic infrastructure that can understand the situation of lonely deaths and implement prevention programs by strengthening the predictive ability through data analysis of the DB server based on PHR and information collected from IoT sensors. The sensor consists of an environmental information collection sensor and a noncontact and wearable sensor for biometric signal collection. A gateway is required to transmit the collected data to the server, and the prototype is presented in this paper. The paper has a discussion purpose of policy task for expanding medical welfare service. The results of this study are believed to help expand services to the socially marginalized and improve the medical environment of the people.