• Title/Summary/Keyword: IoT healthcare

Search Result 162, Processing Time 0.082 seconds

A Portable IoT-cloud ECG Monitoring System for Healthcare

  • Qtaish, Amjad;Al-Shrouf, Anwar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.269-275
    • /
    • 2022
  • Public healthcare has recently become an issue of great importance due to the exponential growth in the human population, the increase in medical expenses, and the COVID-19 pandemic. Speed is one of the crucial factors in saving life, particularly in case of heart attack. Therefore, a healthcare device is needed to continuously monitor and follow up heart health conditions remotely without the need for the patient to attend a medical center. Therefore, this paper proposes a portable electrocardiogram (ECG) monitoring system to improve healthcare for heart attack patients in both home and ambulance settings. The proposed system receives the ECG signals of the patient and sends the ECG values to a MySQL database on the IoT-cloud via Wi-Fi. The signals are displayed as an ECG data chart on a webpage that can be accessed by the patient's doctor based on the HTTP protocol that is employed in the IoT-cloud. The proposed system detects the ECG data of the patient to calculate the total number of heartbeats, number of normal heartbeats, and the number of abnormal heartbeats, which can help the doctor to evaluate the health status of the patient and decide on a suitable medical intervention. This system therefore has the potential to save time and life, but also cost. This paper highlights the five main advantages of the proposed ECG monitoring system and makes some recommendations to develop the system further.

Trends in Utilization of GNSS for E-Healthcare and AI & IoT Field (E-Healthcare와 AI & IoT 분야의 위성항법시스템 최신 활용 동향)

  • Tae-yun Kim;Heui-Seon Park;Jongwon Lim;Suk-seung Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • One of the core keywords in the fourth industrial revolution is convergence, and the convergence of the production, distribution, and consumption processes of services is particularly important. The convergence of user services is underway in various industrial fields including mobile communications, healthcare, mobility, artificial intelligence, etc. In order to offer these converged services efficiently, it is necessary to provide accurate user-centric location information, which can be obtained by employing the global navigation satellite system (GNSS). In addition, as we have entered the post-COVID era, the demand for various fields such as a healthcare, customized tourism services, and aviation services based on accurate location information is exploding. In this paper, we present the results of a case study on the current research trends of GNSS used in telemedicine services and AI & IoT fields, and also analyze these results.

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

Remote medical Smart healthcare system for IoT-based multi-biometric information measurement (IoT기반 다중 생체정보 측정을 위한 원격 의료 스마트 헬스케어 시스템)

  • Sim, Joung-Yong;Seo, Hyun-Gon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.53-61
    • /
    • 2020
  • Recently, as the uncontact service is activated in earnest due to the Corona 19 virus, the necessity of system development to provide non-face-to-face contact remote medical service has increased. In this study, we propose a smart healthcare system, Rm_She(Remote Medical Smart Healthcare System). Rm_She can collect and manage various vital signs information by connecting various healthcare products that detect bio-signals based on IoT to one application. The health check app (HC_app) is used to connect vital sign measurement devices to a wireless LAN and receive vital sign values from the HC_app. Then, the vital signs are output to the user on the smartphone, and the corresponding information is transmitted to the healthcare management server. The healthcare server receives the measured values and stores them in a database, and the stored measured values are provided as a web service so that medical staff can remotely monitor them in real time.

Verification on Description of Wearable - Based Healthcare Information in MPEG-IoMT Reference SW (MPEG-IoMT 참조 SW 에서의 웨어러블 기반 의료정보 서술 툴 검증)

  • Yang, Anna;Lee, Ye-Jin;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.285-287
    • /
    • 2019
  • MPEG - IoMT(Internet of Media Things) 는 사물 인터넷 및 웨어러블 환경에서의 효율적인 미디어 서비스 제공을 위한 데이터 포맷 및 API(Application Programming Interface) 표준을 제공하고 있다. 본 논문에서는 MPEG - IoMT 에 채택된 헬스케어(healthcare) 정보 서술 툴에 대한 IoMT 참조 SW 에서의 검증 실험내용을 기술한다. IoMT 는 의료영상 저장/관리 및 통신을 위한 표준인 DICOM (Digital Imaging a nd Communication in Medical)을 기반으로 의료 미디어 정보를 기술하기 위한 Healthcare Information 스키마(schema)와 이를 기반으로 서술된 정보를 IoT 및 웨어러블 환경에서 활용하기 위한 API 표준을 포함하고 있다. 본 논문에서는 IoMT 참조 SW 를 이용하여 헬스케어 스키마에 따른 헬스케어 정보의 생성 및 파싱(parsing) 을 검증하고, 서술정보를 MThing (Media Thing) 들 간의 교환을 위한 API 에 대한 검증 내용을 보인다.

  • PDF

Acquisition of Multi-channel Biomedical Signals Based on Internet of Things (사물인터넷 기반의 다중채널 생체신호 측정)

  • Kim, Jeong-Hwan;Jeung, Gyeo-Wun;Lee, Jun-Woo;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1252-1256
    • /
    • 2016
  • Internet of Things(IoT)-devices are now expanding inter-connecting networking technologies to invent healthcare monitoring system especially for assessing physiological conditions of the chronically-ill patients those with cardiovascular diseases. Hence, IoT system is expected to be utilized for home healthcare by dedicating the original usage of IoT devices to collect the biomedical data such as electrocardiogram(ECG) and photoplethysmography(PPG) signal. The aim of this work is to implement health monitoring system by integrating IoT devices with Raspberry-pi components to measure and analyze ECG and the multi-channel PPG signals. The acquired data and fiducial features from our system can be transmitted to mobile devices via wireless networking technology to support the concept of tele-monitoring services based on IoT devices.

Healthcare System using Pegged Blockchain considering Scalability and Data Privacy

  • Azizan, Akmal;Pham, Quoc-Viet;Han, Suk Young;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.613-625
    • /
    • 2019
  • The rise of the Internet of Things (IoT) devices have greatly influenced many industries and one of them is healthcare where wearable devices started to track all your daily activities for better health monitoring accuracy and even down to tracking daily food intake in some cases. With the amounts of data that are being tracked and shared between from these devices, questions were raised on how to uphold user's data privacy when data is shared between these IoT devices and third party. With the blockchain platforms started to mature since its inception, the technology can be implemented according to a variety of use case scenarios. In this paper, we present a system architecture based on the healthcare system and IoT network by leveraging on multiple blockchain networks as the medium in between that should enable users to have direct authority on data accessibility of their shared data. We provide proof of concept implementation and highlight the results from our testing to show how the efficiency and scalability of the healthcare system improved without having a significant impact on the performance of the Electronic Medical Record (EMR) that mostly affected by the previous solution since these solutions directly connected to a public blockchain network and which resulted in significant delays and high cost of operation when a large amount of data or complicated functions are involved.

A Study of Development of Wearable Sports Helmet Device Using IoT Server Technology (IoT 서버 기술을 활용한 웨어러블 스포츠 헬멧 디바이스 설계)

  • Kim, Jin-Kook;Kim, Soo-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2020
  • The purpose of this study is to design a process for developing wearable sports helmet devices by utilizing IoT server technology, focusing on sports where helmet wear is essential at sports sites. This enables customized training of athletes by continuously accumulating personal biometric information during training, checking players' condition based on data, and informing them of injury prevention and dangerous situations. In addition, the wearable device that can be useful when the training place is likely to damage the physical health due to heat waves or extremes can provide a foundation for improving the performance. Since such technology can be applied not only to the sports field but also to the society such as the industrial field or the underprivileged, it can be expected to be expandable.

Smart healthcare policy trends using IoT technology (IoT 기술을 활용한 밀폐공간 사고 예방 사례 연구)

  • Choi, Hun;Choi, YooJung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.296-297
    • /
    • 2018
  • In recent years, as the number of death in accidents have increased in the working environment, the safety issue has emerged as an important social issue. Despite efforts to reduce safety accidents through many existing safety-related policies and systems, accident prevention is limited. Accident prevention services using IoT technology have been commercialized recently and the effect is very high. In this study, IOT technology is used to investigate the latest cases of reducing death accidents in the work environment.

  • PDF

Design and Implementation of Bio-data Monitering System Based on ISO/IEEE 11073 DIM/REST for IoT Healthcare Service (IoT 헬스케어 서비스를 위한 ISO/IEEE 11073 DIM/REST 기반 생체정보 모니터링 시스템 설계 및 구현)

  • Choi, Ju-Hyun;Chun, Seung-Man;Jang, Dong-Hyun;Park, Jong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.3-12
    • /
    • 2015
  • Recently, various studies have been attempted to provide a biological information monitoring service through integrating with the web service. The medical information transmission standard ISO/IEEE 11073 PHD defines the optimized exchange protocol ISO/IEEE 11073-20601 based on the No-IP to exchange the biometric information between the ISO/IEEE 11073 agent and the manager. It's system structure based on the No-IP using ISO/IEEE 11073-20601 is not suitable for providing a remote biological information monitoring services. That is because it is difficult to provide to control and manage the biological information measurement devices, which have installed IP protocol stack at the remote. Furthermore, ACSE and CMDISE in ISO/IEEE 11073-20601 are not suitable to provide U-healthcare services based on IoT because they are complicated and difficult to implement it caused by the structural complexity. In order to solve the problems, in this paper, we propose the biological information monitoring architecture based on ISO/IEEE 11073 DIM/REST of IoT environment to provide the biological information monitoring service based on IoT. To do this, we designed biological information monitoring system architecture based on IoT and the message exchange protocol of ISO/IEEE 11073 DIM/REST between the ISO/IEEE 11073 agent and the ISO/IEEE 11073 manager. In order to verify the realistic possibility of the proposed system architecture, we developed the service prototype.