• Title/Summary/Keyword: IoT healthcare

Search Result 162, Processing Time 0.023 seconds

Smart Device based ECG Sensing IoT Applications (스마트 디바이스 기반 ECG 감지 IoT 응용 서비스에 관한 연구)

  • Mariappan, Vinayagam;Lee, Seungyoun;Lee, Junghoon;Lee, Juyoung;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • Internet of things (IoT) is revolutionizing in the patient-Centered medical monitoring and management by authorizing the Smartphone application and data analysis with medical centers. The network connectivity is basic requirement to collect the observed human beings' health information from Smartphone to monitor the health from IoT medical devices in personal healthcare. The IoT environment built in Smartphone is very effective and does not demand infrastructure. This paper presents the smart phone deployed personal IoT architecture for Non-Invasive ECG Capturing. The adaptable IoT medical device cum Gateway is used for personal healthcare with big data storage on cloud configuration. In this approach, the Smartphone camera based imaging technique used to extract the personal ECG waveform and forward it to the cloud based big data storage connectivity using IoT architecture. Elaborated algorithm allows for efficient ECG registration directly from face image captured from Smartphone or Tablet camera. The profound technique may have an exceptional value in monitoring personal healthcare after adequate enhancements are introduced.

A Study on the Recognition and Demand of Teachers and Parents of Using IoT Health-Care Devices in Day-Care Centers (어린이집에서의 IoT 헬스케어 디바이스 활용에 대한 교사와 부모의 인식 및 요구)

  • Kwon, Hye-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.71-79
    • /
    • 2019
  • This study was conducted to examine the awareness and demands of parents and teachers on the use of IoT healthcare devices at daycare centers. A survey was conducted on 200 teachers and 200 parents. Collected data were analyzed by Frequency analysis, t-test, 𝑥2, using the SPSS WIN 22.0. The results of this study are as follows. First, teachers showed a higher level of preference for using IoT healthcare devices as they showed positive perception and support compared to parents, and showed higher recognition of information leakage than parents. Second, teachers and parents were most hoping to use IoT healthcare devices at emergency response in daycare-centers and had the highest demands for wearable devices. As a result of the both parents and teachers demand cost-sharing. Based on the results of this study, the possibility of utilizing IoT healthcare devices in daycare centers were discussed.

Data Storage and Security Model for Mobile Healthcare Service based on IoT (IoT 기반의 모바일 헬스케어 서비스를 위한 데이터 저장 및 보호 모델)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.187-193
    • /
    • 2017
  • Objects Internet-based healthcare services provide healthcare and healthcare services, including measurement of user's vital signs, diagnosis and prevention of diseases, through a variety of object internet devices. However, there is a problem that new security vulnerability can occur when inter-working with the security weakness of each element technology because the internet service based on the object Internet provides a service by integrating various element technologies. In this paper, we propose a user privacy protection model that can securely process user's healthcare information from a third party when delivering healthcare information of users using wearable equipment based on IoT in a mobile environment to a server. The proposed model provides attribute values for each healthcare sensor information so that the user can safely handle, store, and store the healthcare information, thereby managing the privacy of the user in a hierarchical manner. As a result of the performance evaluation, the throughput of IoT device is improved by 10.5% on average and the server overhead is 9.9% lower than that of the existing model.

Research on a Solution for Efficient ECG Data Transmission in IoT Environment (사물 인터넷 환경에서의 효율적인 ECG 데이터 전송 방안에 관한 연구)

  • Cho, Gyoun Yon;Lee, Seo Joon;Lee, Tae Ro
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.371-376
    • /
    • 2014
  • Consistently collecting a variety of vital signs is crucial in u-Healthcare. In order to do so, IoT is being considered as a top solution nowadays as an efficient network environment between the sensor and the server. This paper proposes a transmission method and compression algorithm which are appropriate for IoT environment. Results were compared to widely used compression methods, and were compared to other prior researches. The results showed that the compression ratio of our proposed algorithm was 11.7.

IoT data analytics architecture for smart healthcare using RFID and WSN

  • Ogur, Nur Banu;Al-Hubaishi, Mohammed;Ceken, Celal
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.135-146
    • /
    • 2022
  • The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.

Smart healthcare policy trends using IoT technology (IoT 기술을 활용한 스마트헬스케어 정책 동향)

  • Choi, Hun;Choi, YooJung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.215-216
    • /
    • 2017
  • In recent years, the quality of our lives has been improved by providing services that utilize IoT(Internet of Things) technology in various fields. The information obtained through IoT technology provides a basis for actively providing services that people want. However, in the field of smart healthcare, there are a lot of restrictions due to legal regulations and policies due to the scope of handling not only personal information but also simple medical information. Therefore, this study examines the legal systems and policies in the field of smart healthcare and examines the direction of smart healthcare.

  • PDF

The influence of the IoT based healthcare user's experience value on the usage and continuous use intention -Focused on Xiaomi Mi band user in china- (IoT기반 헬스케어 사용자 경험가치가 사용량과 지속적 사용의도에 미치는 영향에 관한연구 -중국내 샤오미 미밴드 사용자를 중심으로-)

  • Shang, Meng;Shin, Yong Ho;Lee, Chul Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.689-706
    • /
    • 2016
  • Purpose: This study identifies causality in IoT-based healthcare user's experience(playful experience, economical experience), trust, usage, degree of dependence and continuous use intention, especially focused on chinese case. Methods: Face to face interviews was conducted for people who has experience in the use of the Xiaomi Mi band. This study used Partial Least Square(PLS) method with the questionnaires from the interview. Results: IoT-based healthcare users taking playful experience have a strong trust in a positive economic experiences. Also, the user recognizing the experience as an economic one shows stronger intention to use continuously. Conclusion: By getting healthcare users have more economic experience, they have continuous use intention of healthcare product. The empirical findings can be applied to the related companies strategy building.

Reliability-based Message Transmission System in Healthcare Devices (헬스케어 디바이스에서의 신뢰성 기반 메시지 전달 시스템)

  • Lee, Young-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • The Internet of Things is valuable as a means of solving social problems such as personal, public, and industrial. Recently, the application of IoT technology to the healthcare industry is increasing. It is important to ensure reliability and security in IoT-based healthcare services. Communication protocols, wireless transmit/receive techniques, and reliability-based message delivery are essential elements in IoT healthcare devices. The system was designed and implemented to measure body temperature and activity through body temperature and acceleration sensors and deliver them to the oneM2M-based Mobius platform.

Subnet Generation Scheme based on Deep Learing for Healthcare Information Gathering (헬스케어 정보 수집을 위한 딥 러닝 기반의 서브넷 구축 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.221-228
    • /
    • 2017
  • With the recent development of IoT technology, medical services using IoT technology are increasing in many medical institutions providing health care services. However, as the number of IoT sensors attached to the user body increases, the healthcare information transmitted to the server becomes complicated, thereby increasing the time required for analyzing the user's healthcare information in the server. In this paper, we propose a deep learning based health care information management method to collect and process healthcare information in a server for a large amount of healthcare information delivered through a user - attached IoT device. The proposed scheme constructs a subnet according to the attribute value by assigning an attribute value to the healthcare information transmitted to the server, and extracts the association information between the subnets as a seed and groups them into a hierarchical structure. The server extracts optimized information that can improve the observation speed and accuracy of user's treatment and prescription by using deep running of grouped healthcare information. As a result of the performance evaluation, the proposed method shows that the processing speed of the medical service operated in the healthcare service model is improved by 14.1% on average and the server overhead is 6.7% lower than the conventional technique. The accuracy of healthcare information extraction was 10.1% higher than the conventional method.

Security Analysis of Remote Healthcare System in Cloud-based IoT Environment (클라우드 기반 IoT 환경의 원격 헬스케어 시스템에 대한 보안성 분석)

  • Kwon Jaemin;Hong Sewoong;Choi Younsung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.31-42
    • /
    • 2023
  • As computer performance is leveled upward, the use of IoT systems is gradually expanding. Although IoT systems are used in many fields, it is true that it is difficult to build a safe system due to performance limitations. To overcome these limitations, many researchers have proposed numerous protocols to improve security issues. Among them, Azrour et al. except. We proposed a new efficient and secure authentication protocol for remote healthcare systems in a cloud-based IoT environment, and claimed that the new protocol could solve the security vulnerabilities of the existing protocols and was more efficient. However, in this paper, through the security analysis of the remote healthcare system in the cloud-based IoT environment proposed by Azrour et al., the protocol of this system was found to be vulnerable to Masquerade attack, Lack of Perfect Forward Secrecy, Off-line password guessing attack, and Replay attack.