• Title/Summary/Keyword: IoT Sensors

Search Result 500, Processing Time 0.026 seconds

Development of IAQ Index for Indoor Air Quality in City Buses (시내버스 실내공기질 IAQ 종합지수 개발)

  • Jeon, Bo-Il;Kwak, Min-Jeong;Kang, Sang-Hyeon;Kim, Jong-Cheol;Yun, Hyun-Jun;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.444-456
    • /
    • 2020
  • Objectives: This study developed an index for the indoor air quality management of city buses to allow the provision of indoor air quality information to city bus users. Methods: Nine city buses in Seoul were measured for PM10, PM2.5, CO2, temperature, and relative humidity through IoT sensors. Big data collected through the sensors was analyzed to identify indoor air quality on city buses and graded through the index. Results: As a result of dividing the measured city bus data into five grades through the IAQ index, PM10 was rated "good" for 30.4% of the total measured values, and 9.2% were rated "risky". For PM2.5, 67.7 percent were rated "good" and 0.4 percent were rated "risky". For CO2, 0.9% were 'good' and 1.1% were 'risky'. The results of the classification through the IAQ index for city buses showed that the impact of good, normal, sensitive, bad, and dangerous were 2.7, 38.8, 46.0, 12.4, and 0.1%, respectively. According to the analysis by measurement area, Seocho-gu, Gangnam-gu, Seongdong-gu, Gwangjin-gu, and Dobong-gu are "normal" and other areas (Seodaemoon-gu, Jongno-gu, Yongsan-gu, Jung-gu, Seongbuk-gu, Dongdaemun-gu, Junggye-gu, Gangbuk-gu, and Nowon-gu) are all rated "sensitive". Conclusions: When analyzing cases where PM10 and CO2 indices are in the "bad" zone, the concentration is generally found to increase during rush hour, during which there are a large number of passengers. It is expected that indoor air quality management in vehicles will be necessary during rush hour.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Journal of Knowledge Information Technology and Systems (스마트축사 활용 가상센서 기술 설계 및 구현)

  • Hyun Jun Kim;Park Man Bok;Meong Hun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.55-62
    • /
    • 2023
  • Innovation and change are occurring rapidly in the agriculture and livestock industry, and new technologies such as smart bams are being introduced, and data that can be used to control equipment is being collected by utilizing various sensors. However, there are various challenges in the operation of bams, and virtual sensor technology is needed to solve these challenges. In this paper, we define various data items and sensor data types used in livestock farms, study cases that utilize virtual sensors in other fields, and implement and design a virtual sensor system for the final smart livestock farm. MBE and EVRMSE were used to evaluate the finalized system and analyze performance indicators. As a result of collecting and managing data using virtual sensors, there was no obvious difference in data values from physical sensors, showing satisfactory results. By utilizing the virtual sensor system in smart livestock farms, innovation and efficiency improvement can be expected in various areas such as livestock operation and livestock health status monitoring. This paper proposes an innovative method of data collection and management by utilizing virtual sensor technology in the field of smart livestock, and has obtained important results in verifying its performance. As a future research task, we would like to explore the connection of digital livestock using virtual sensors.

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

A Way of Unusual Gait Cognition for Life Safety (생활안전 보장을 위한 보행자의 비정상 걸음 인지 방안)

  • Kim, Su-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.215-222
    • /
    • 2016
  • Research on gait recognition and its use is actively underway. This study suggests a method to recognize abnormal gaits of pedestrians. The purposes of the existing research to recognize normal steps are to measure physical activities and to validate people by their walks, but the purpose to recognize abnormal steps in this study is to insure the safe life of pedestrians. There are situations in which pedestrians are unaware of themselves vulnerable and can not ask for help. The purpose of this research is that even if pedestrians are unaware of themselves and there are no spontaneous requests for helps, it is intended for them to escape from dangers and difficulties by adopting the recent IOT technology. Hence, this study analyzes normal pace of pedestrians using the triaxial acceleration sensors, and takes ranges of their normal walking. And then, the steps of pedestrians are measured using the triaxial acceleration sensors, contrasted with their normal walking ranges, and determine whether their steps are normal or not. When it is out of the state for normal paces, a method to determine as abnormal paces is suggested.

A Study on the Safety Monitoring of Bridge Facilities based on Smart Sensors (스마트 센서 기반의 교량 시설물 안전 모니터링 기법 연구)

  • YEON, Sang-Ho;KIM, Joon-Soo;YEON, Chun-Hum
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.97-106
    • /
    • 2019
  • Today, many smart sensor's measurement instruments are used to check the safety situation of various medium and large bridge structures that should be maintained in the construction facilities, but most of them use the method of measuring and confirming the displacement behavior of the bridge at regular intervals. In order to continuously check the safety situation, various measuring instruments are used, but most of them are not able to measure and measure the displacement and behavior of main construction structures at regular intervals. In this study, GNSS and environment smart sensors and drone's image data are transmitted to wireless network so that risk of many bridge's structures can be detected beforehand. As a result, by diagnosing the fine displacement of the bridge in real time and its condition, reinforcement, repair and disaster prevention measures for the structural parts of the bridges, which are expected to be dangerous, and various disasters and accidents can be prevented, and disaster can be prevented could suggest a new alternative.

Forklift Weight Measurement System using Anchor Bolt Type Strain Gauge Sensor (Anchor 볼트 형태의 Strain Gauge 센서를 이용한 지게차 적재 중량 측정 시스템)

  • Han, Chi-moon;Yim, Choon-Sik;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.200-206
    • /
    • 2019
  • The most frequent type of safety-accident in industry is the overturning of forklift. The leading cause of this accident is overload in forklift. Thus, it is needed to measure the weight on board of forklift. The most common method is based on load cell, and this method has the merit of high accuracy. However, high price is the disadvantage of this method. In this paper, we propose the new measurement system of the weight on board of forklift based on the strain gauge sensor, which has the disadvantage of low accuracy. The differentiation of the proposed system is that the shape of the strain gauge sensor customized for anchor bolt of forklift in order to improve the accuracy and durability. In system four strain gauge sensors are inserted into four anchor bolts. The test result shows that 1% error of measurement is obtained in the proposed anchor bolt type strain gauge sensors.

Optimal Node Analysis in LoRaWAN Class B (LoRaWAN Class B에서의 최적 노드 분석)

  • Seo, Eui-seong;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.100-103
    • /
    • 2019
  • Due to the fourth industrial revolution called 'fusion and connection', interest in 'high connectivity society' and 'highland society' is increasing, and related objects are not limited to automation and connected cars. The Internet of Things is the main concern of the 4th Industrial Revolution and it is expected to play an important role in establishing the basis of the next generation mobile communication service. Several domestic and foreign companies have been studying various types of LPWANs for the construction of the Internet based on things, and there is Semtech's LoRaWAN technology as representative. LoRaWAN is a long-distance, low-power network designed to manage a large number of devices and sensors, with communications from hundreds to thousands to thousands of devices and sensors. In this paper, we analyze the optimum node capacity of gateway for maximum performance while reducing resource waste in using LoRaWAN.

  • PDF

A Novel Way of Context-Oriented Data Stream Segmentation using Exon-Intron Theory (Exon-Intron이론을 활용한 상황중심 데이터 스트림 분할 방안)

  • Lee, Seung-Hun;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.799-806
    • /
    • 2021
  • In the IoT environment, event data from sensors is continuously reported over time. Event data obtained in this trend is accumulated indefinitely, so a method for efficient analysis and management of data is required. In this study, a data stream segmentation method was proposed to support the effective selection and utilization of event data from sensors that are continuously reported and received. An identifier for identifying the point at which to start the analysis process was selected. By introducing the role of these identifiers, it is possible to clarify what is being analyzed and to reduce data throughput. The identifier for stream segmentation proposed in this study is a semantic-oriented data stream segmentation method based on the event occurrence of each stream. The existence of identifiers in stream processing can be said to be useful in terms of providing efficiency and reducing its costs in a large-volume continuous data inflow environment.

A Study on Real-Time Detection of Physical Abnormalities of Forestry Worker and Establishment of Disaster Early Warning IOT (임업인의 신체 이상 징후 실시간 감지 및 재해 조기경보 사물인터넷 구축에 관한 연구)

  • Park, In-Kyu;Ham, Woon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose the construction of an IOT that monitors foresters' physical abnormalities in real time, performs emergency measures, and provides alarms for natural disasters or heatstroke such as a nearby forest fire or landslide. Nodes provided to foresters include 6-axis sensors, temperature sensors, GPS, and LoRa, and transmit the measured data to the network server through the gateway using LoRa communication. The network server uses 6-axis sensor data to determine whether or not a forester has any signs of abnormal body, and performs emergency measures by tracking GPS location. After analyzing the temperature data, it provides an alarm when there is a possibility of heat stroke or when a forest fire or landslide occurs in the vicinity. In this paper, it was confirmed that the real-time detection of physical abnormalities of foresters and the establishment of disaster early warning IOT is possible by analyzing the data obtained by constructing a node and a gateway and constructing a network server.