• Title/Summary/Keyword: IoT Networks

Search Result 378, Processing Time 0.027 seconds

Design Method of Things Malware Detection System(TMDS) (소규모 네트워크의 IoT 보안을 위한 저비용 악성코드 탐지 시스템 설계 방안 연구)

  • Sangyoon Shin;Dahee Lee;Sangjin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.459-469
    • /
    • 2023
  • The number of IoT devices is explosively increasing due to the development of embedded equipment and computer networks. As a result, cyber threats to IoT are increasing, and currently, malicious codes are being distributed and infected to IoT devices and exploited for DDoS. Currently, IoT devices that are the target of such an attack have various installation environments and have limited resources. In addition, IoT devices have a characteristic that once set up, the owner does not care about management. Because of this, IoT devices are becoming a blind spot for management that is easily infected with malicious codes. Because of these difficulties, the threat of malicious codes always exists in IoT devices, and when they are infected, responses are not properly made. In this paper, we will design an malware detection system for IoT in consideration of the characteristics of the IoT environment and present detection rules suitable for use in the system. Using this system, it will be possible to construct an IoT malware detection system inexpensively and efficiently without changing the structure of IoT devices that are already installed and exposed to cyber threats.

Design and Evaluation of a Fault-tolerant Publish/Subscribe System for IoT Applications (IoT 응용을 위한 결함 포용 발행/구독 시스템의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1101-1113
    • /
    • 2021
  • The rapid growth of sense-and-respond applications and the emerging cloud computing model present a new challenge: providing publish/subscribe middleware as a scalable and elastic cloud service. The publish/subscribe interaction model is a promising solution for scalable data dissemination over wide-area networks. In addition, there have been some work on the publish/subscribe messaging paradigm that guarantees reliability and availability in the face of node and link failures. These publish/subscribe systems are commonly used in information-centric networks and edge-fog-cloud infrastructures for IoT. The IoT has an edge-fog cloud infrastructure to efficiently process massive amounts of sensing data collected from the surrounding environment. In this paper. we propose a quorum-based hierarchical fault-tolerant publish/subscribe systems (QHFPS) to enable reliable delivery of messages in the presence of link and node failures. The QHFPS efficiently distributes IoT messages to the publish/subscribe brokers in fog overlay layers on the basis of proposing extended stepped grid (xS-grid) quorum for providing tolerance when faced with node failures and network partitions. We evaluate the performance of QHFPS in three aspects: number of transmitted Pub/Sub messages, average subscription delay, and subscritpion delivery rate with an analytical model.

A Study on IoT Devices Vulnerability and Security (IoT 디바이스 보안위협 및 대응방안 연구)

  • Yoo, Seung Jae
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Numerous IoT devices are connected to a wireless network environment to collect and transmit data without time and space limitations, but many security vulnerabilities are exposed in these process. But IoT security is not easy to create feasible security standards and device authentication due to differences in the approach or implementation of devices and networks. However, it is clear that the improvement and application of the standard framework for enhancing the security level of the device is the starting point to help the most successful security effect. In this study, we investigate the confidentiality, integrity, availability, and access control implementation plans for IoT devices (which are the basic goals of information security), and standardized security evaluation criteria for IoT devices, and study ways to improve them.

An Authentication Management using Biometric Information and ECC in IoT-Edge Computing Environments (IoT-EC 환경에서 일회용 생체정보와 ECC를 이용한 인증 관리)

  • Seungjin Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.142-148
    • /
    • 2024
  • It is difficult to apply authentication methods of existing wired or wireless networks to Internet of Things (IoT) devices due to their poor environment, low capacity, and low-performance processor. In particular, there are many problems in applying methods such as blockchain to the IoT environment. In this paper, edge computing is used to serve as a server that authenticates disposable templates among biometric information in an IoT environment. In this environment, we propose a lightweight and strong authentication procedure using the IoT-edge computing (IoT-EC) system based on elliptic curve cryptographic (ECC) and evaluate its safety.

Hierarchical IoT Edge Resource Allocation and Management Techniques based on Synthetic Neural Networks in Distributed AIoT Environments (분산 AIoT 환경에서 합성곱신경망 기반 계층적 IoT Edge 자원 할당 및 관리 기법)

  • Yoon-Su Jeong
    • Advanced Industrial SCIence
    • /
    • v.2 no.3
    • /
    • pp.8-14
    • /
    • 2023
  • The majority of IoT devices already employ AIoT, however there are still numerous issues that need to be resolved before AI applications can be deployed. In order to more effectively distribute IoT edge resources, this paper propose a machine learning-based approach to managing IoT edge resources. The suggested method constantly improves the allocation of IoT resources by identifying IoT edge resource trends using machine learning. IoT resources that have been optimized make use of machine learning convolution to reliably sustain IoT edge resources that are always changing. By storing each machine learning-based IoT edge resource as a hash value alongside the resource of the previous pattern, the suggested approach effectively verifies the resource as an attack pattern in a distributed AIoT context. Experimental results evaluate energy efficiency in three different test scenarios to verify the integrity of IoT Edge resources to see if they work well in complex environments with heterogeneous computational hardware.

An Approach for Applying Network-based Moving Target Defense into Internet of Things Networks

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.35-42
    • /
    • 2019
  • In this paper, we propose an approach to apply network-based moving target defense into Internet of Things (IoT) networks. The IoT is a technology that provides the high interconnectivity of things like electronic devices. However, cyber security risks are expected to increase as the interconnectivity of such devices increases. One recent study demonstrated a man-in-the-middle attack in the statically configured IoT network. In recent years, a new approach to cyber security, called the moving target defense, has emerged as a potential solution to the challenge of static systems. The approach continuously changes system's attack surface to prevent attacks. After analyzing IPv4 / IPv6-based moving target defense schemes and IoT network-related technologies, we present our approach in terms of addressing systems, address mutation techniques, communication models, network configuration, and node mobility. In addition, we summarize the direction of future research in relation to the proposed approach.

Past, Present, and Future of IoT (IoT의 과거, 현재 그리고 미래)

  • Kim, H.;Hwang, S.K.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • In the past, the Internet connected people together; recently, however it has been extended to the Internet of Things (IoT), allowing all things in the physical world to be connected. We call a new society in which everything is connected through IoT a 'hyper-connected society'. IoT for a hyper-connected society is more than just connecting things to the Internet, it is an infrastructure providing intelligent services without human intervention by connecting things to the Internet using sensors and communication functions, collecting data from connected things, and analyzing and predicting information. Therefore, IoT is a convergence technology that includes not only sensors and communication networks but also big data and AI. This paper examines the short history of IoT, reviews its current trends, and finally, discusses its future direction.

Intrusion Detection for IoT Traffic in Edge Cloud (에지 클라우드 환경에서 사물인터넷 트래픽 침입 탐지)

  • Shin, Kwang-Seong;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.138-140
    • /
    • 2020
  • As the IoT is applied to home and industrial networks, data generated by the IoT is being processed at the cloud edge. Intrusion detection function is very important because it can be operated by invading IoT devices through the cloud edge. Data delivered to the edge network in the cloud environment is traffic at the application layer. In order to determine the intrusion of the packet transmitted to the IoT, the intrusion should be detected at the application layer. This paper proposes the intrusion detection function at the application layer excluding normal traffic from IoT intrusion detection function. As the proposed method, we obtained the intrusion detection result by decision tree method and explained the detection result for each feature.

A Roadmap for IoT Network Research and Development

  • almudayni, Ziyad;Soh, Ben;Li, Alice
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • To make the research and development in IoT networks witness a significant improvement and last for a long period, it is always important to attract new researchers to work on this area and be a part of it. The best way to attract researchers to work in any research area and have their interest is to give them a clear background and roadmap about it. In this way, researchers can easily find a deep point to start their research based on their interest. This paper presents an overview and roadmap about IoT technologies from the most five vital aspects: IoT architecture, communication technologies, type of IoT applications, IoT applications protocols and IoT challenges.

Zigbee Adaptor for Two-way Data/Event/Service Interoperation in Internet of Things (사물인터넷의 양방향 데이터/이벤트/서비스 연동을 위한 지그비 어댑터)

  • Back, Moon-Ki;Yim, Hyung-Jun;Lee, Kyu-Chul
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.107-114
    • /
    • 2014
  • Things in the IoT(Internet of Things) make various services by exchanging information over networks. The IoT includes many types of WSNs(Wireless Sensor Networks) that consists of spatially distributed wireless sensor nodes and operates with the various purposes with useful technologies such as identification, sensing and communication. Typically, Zigbee network composed of low-cost and lowpower devices is mainly used for wide-area monitoring and remote device control systems. The IoT composed of various WSNs cannot interoperate among networks because of heterogeneous communication protocol and different data representation of each network, but can facilitate interconnection and information exchange among networks via the DDS, which is communication middleware standard that aims to enable real-time, high performance and interoperable data exchanges. In this paper, we proposed design of Zigbee Adaptor for two-way interoperation and data exchange between Zigbee network and other networks in the IoT. Zigbee Adaptor communicates with Zigbee network according to the Zigbee protocol and communicates with external networks via DDS. DDS-based Zigbee Adaptor can facilitate interoperation between a Zigbee network and external networks by systematic cooperation among its components.