• Title/Summary/Keyword: IoT Gateway

Search Result 174, Processing Time 0.035 seconds

Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

  • Lin, Te-Yuan;Fuh, Chiou-Shann
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5654-5668
    • /
    • 2018
  • Driven by security and real-time demands of Internet of Things (IoT), the timing of fog computing and edge computing have gradually come into place. Gateways bear more nearby computing, storage, analysis and as an intelligent broker of the whole computing lifecycle in between local devices and the remote cloud. In fog computing, the edge broker requires X-aware capabilities that combines software programmability, stream processing, hardware optimization and various connectivity to deal with such as security, data abstraction, network latency, service classification and workload allocation strategy. The prosperous of Field Programmable Gate Array (FPGA) pushes the possibility of gateway capabilities further landed. In this paper, we propose a software-defined gateway (SDG) scheme for fog computing paradigm termed as Fog Computing Zero-Knowledge Gateway that strengthens data protection and resilience merits designed for industrial internet of things or highly privacy concerned hybrid cloud scenarios. It is a proxy for fog nodes and able to integrate with existing commodity gateways. The contribution is that it converts Privacy-Enhancing Technologies rules into provable statements without knowing original sensitive data and guarantees privacy rules applied to the sensitive data before being propagated while preventing potential leakage threats. Some logical functions can be offloaded to any programmable micro-controller embedded to achieve higher computing efficiency.

Design and Implementation of Data Processing Middleware and Management System for IoT based Services

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Sensor application systems for remote monitoring and control are required, such as the establishment of databases and IoT service servers, to process data being transmitted and received through radio communication modules, controllers and gateways. This paper designs and implements database server, IoT service server, data processing middleware and IoT management system for IoT based services based on the controllers, communication modules and gateway middleware platform developed. For this, we firstly define the specification of the data packet and control code for the information classification of the sensor application system, and also design and implement the database as a separate server for data protection and efficient management. In addition, we design and implement the IoT management system so that functions such as status information verification, control and modification of operating environment information of remote sensor application systems are carried out. The implemented system can lead to efficient operation and reduced management costs of sensor application systems through site status analysis, setting operational information, and remote control and management.

Implementation of Safety management broadcasting system for IoT based in IP PBX (IP PBX기반 안전관리 IoT 방송 시스템 구현)

  • Kim, Sam-Taek
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.9-14
    • /
    • 2019
  • Currently, with the success of 5G commercialization, a server system that integrates various Internet public safety services should be developed. In this paper, we developed a public safety integrated server, which is an IoT platform connecting IoT device and IoT gateway based on IP PBX. This server is based on embedded OS and various IoT services are executed in one system and call processing / broadcasting server function that processes emergency call and emergency broadcasting in public places is built in. This system collects IoT sensor data and emergency bell information and automatically sends out emergency alarms, emergency evacuation broadcasts, etc. at an accident site in an emergency situation, and transmits the daily information to the upper IoT service server, Provide public safety management services.

A Research on Low-power Buffer Management Algorithm based on Deep Q-Learning approach for IoT Networks (IoT 네트워크에서의 심층 강화학습 기반 저전력 버퍼 관리 기법에 관한 연구)

  • Song, Taewon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2022
  • As the number of IoT devices increases, power management of the cluster head, which acts as a gateway between the cluster and sink nodes in the IoT network, becomes crucial. Particularly when the cluster head is a mobile wireless terminal, the power consumption of the IoT network must be minimized over its lifetime. In addition, the delay of information transmission in the IoT network is one of the primary metrics for rapid information collecting in the IoT network. In this paper, we propose a low-power buffer management algorithm that takes into account the information transmission delay in an IoT network. By forwarding or skipping received packets utilizing deep Q learning employed in deep reinforcement learning methods, the suggested method is able to reduce power consumption while decreasing transmission delay level. The proposed approach is demonstrated to reduce power consumption and to improve delay relative to the existing buffer management technique used as a comparison in slotted ALOHA protocol.

SIP-based Session Management Architecture between Gateways and Servers on Mobius IoT Platform (모비우스 IoT 플랫폼에서 게이트웨이와 서버간 SIP 기반 세션 관리 구조)

  • Kim, Daesoon;Min, Kyoungwook;Roh, Byeong-hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.90-99
    • /
    • 2017
  • The service structure of the Mobius IoT platform, which has been developed on the basis of the oneM2M standard, connects servers and gateways directly to exchange data using HTTP or MQTT. Such structure may cause problems not to operate IoT services safely. In this paper, we propose an effective structure to manage sessions between gateways (or devices) and server using SIP safely and stably. In addition, we provide the way to implement the proposed method on Mobius IoT platform. To verify the operation of the proposed method, we actually implement the proposed method on Mobius IoT platform, and construct a testbed for a typical IoT application service environment with SIP servers. The results of the experiment show that the proposed method works normally, and it can contribute to the stable operation of IoT services.

A Study on IoT/ICT Convergence Smart Safety Management System for Safety of High Risk Workers (고위험 직업군의 안전을 위한 IoT/ICT융합 스마트 안전관리 시스템에 관한 연구)

  • Kim, Seungyong;Hwang, Incheol;Kim, Dongsik;Moon, Byungmoo;Oh, Seyong
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • Purpose: This study aims at developing and implementing Smart Safety Management System based on IoT/ICT Convergence for safety of high-risk groups working at disaster or industrial field. Its functions are as follows. Method: We will develop three devices for keeping the safety of high-risk jobs: Sensor of inactivity, Lora based Refitting technology for communication between high-risk workers, and Lora Gateway for monitoring entire situations. Then we will test three devices in respect of their functions, and propose their applicabilities in the field. Results: The system can send and receive safety tags and danger signals by which sensor technology can detect dangerous state of workers. And its command terminal was developed by low-power wireless communication technology and LoRa Gateway, which can fulfill the lifting functions between safety tags. And, furthermore, the command terminal can monitor dangerous situations of disaster sites in real time and can perform the preemptive rescues. Conclusion: This study proves the functional efficacy of Smart Safety Management System for worker safety in various high-risk occupational groups, and also suggests ways to secure worker safety in disaster area and various high risk industrial sites.

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System (Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크)

  • Hong, Gyeonghwan;Park, Eunsoo;Choi, Sihoon;Shin, Dongkun
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.710-717
    • /
    • 2016
  • Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

Study on Construction of IoT environments oneM2M standards utilizing the KETI Mobius platform and LoRa (KETI의 Mobius플랫폼과 LoRa를 활용한 oneM2M규격의 IoT 환경 구축에 관한 연구)

  • Lee, So-Haeng;Song, Bub-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.285-289
    • /
    • 2016
  • In recent domestic new growth model based on the IoT it has been proposed by the industry and national authorities. As applied to these Internet-based IoT convergence center of the field is expected to be realized, including the improvement and increase of efficiency of various economic values. In this paper, using KETI ( Korea Electronics Technology Institute ) developed distribution being oneM2M standards-based platform from Mobius and Gateway Platforms & Cube, and low power, capable of long-range RF communication LoRa communication module is proposed to build the site applicable environment.

  • PDF

IoT-enabled Solutions for Tour Photography Services

  • Jeong, Isu;Baek, Seungwoo;An, Eunsol;Kim, Yujin;Choi, Jiwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.127-135
    • /
    • 2020
  • In this paper, we propose an IoT-enabled solution for tour photography services with small-size investment and resources in the travel and tourism industries, being able to impact on economic, social, and cultural values. An IoT-enabled camera is developed based on an open hardware and software platform complying with oneM2M, which can make traditional embedded systems oneM2M-compliant devices due to a middleware solution called TAS (thing adaptation software). IoT cameras deployed around photo zones in a tour site could be remotely controlled via an IoT gateway with a Web-based application on a smartphone. Users would perform a pan and tilt camera control if they want and then take and download a perfect photo picture (even though they are away from the tour site). We expect that the proposed solution will promote the deployment IoT-enabled technologies in tour and travel industries which are important parts of the tertiary sector.

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.