• Title/Summary/Keyword: IoT Device Framework

Search Result 35, Processing Time 0.023 seconds

Device Virtualization Framework for Smart Home Cloud Service (스마트홈 클라우드 서비스를 위한 디바이스 가상화 프레임워크)

  • Kim, Kyungwon;Park, Jongbin;Kum, Seungwoo;Jung, Jongjin;Yang, Chang-Mo;Lim, Taebeom
    • Telecommunications review
    • /
    • v.24 no.5
    • /
    • pp.677-691
    • /
    • 2014
  • Connectivity is becoming more important keywords recently. For example, many devices are going to be connected to the internet. It is usually called as the IoT(internet of things). Many IoT devices can be evolved as a part of giant system of the world wide web. It is a great opportunity for us, because many new services can have emerged through this paradigm. In this paper, we propose a device virtualization framework for smart home service. The proposed framework connects the many home appliances devices and the internet using a dynamic protocol conversion. After our protocol conversion for device virtualization, our framework provides a RESTful API to access the resources of device through the internet. Therefore, the proposed framework can provide a variety of services, so it also can be developed into the ecosystem for smart home service. The current framework version only supports UPnP enabled devices of the home, but it can easily be extended to many other home middleware solutions. To verify the feasibility of the framework, we have implemented several service scenarios.

A Framework for Time Awareness System in the Internet of Things (사물인터넷에서 시각 정보 관리 체계)

  • Hwang, Soyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1069-1073
    • /
    • 2016
  • The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure. IoT is expected to offer advanced connectivity of devices, systems, and services that goes beyond machine-to-machine communications and covers a variety of protocols, domains, and applications. Key system-level features that IoT needs to support can be summarized as device heterogeneity, scalability, ubiquitous data exchange through proximity wireless technologies, energy optimized solutions, localization and tracking capabilities, self-organization capabilities, semantic interoperability and data management, embedded security and privacy-preserving mechanisms. Time information is a critical piece of infrastructure for any distributed system. Time information and time synchronization are also fundamental building blocks in the IoT. The IoT requires new paradigms for combining time and data. This paper reviews conventional time keeping mechanisms in the Internet and presents issues to be considered for combining time and data in the IoT.

A Study of Phase Sensing Device IoT Network Security Technology Framework Configuration (디바이스 센싱 단계의 IoT 네트워크 보안 기술 프레임워크 구성)

  • Noh, SiChoon;Kim, Jeom goo
    • Convergence Security Journal
    • /
    • v.15 no.4
    • /
    • pp.35-41
    • /
    • 2015
  • Internet of Things has a wide range of vulnerabilities are exposed to information security threats. However, this does not deal with the basic solution, the vaccine does not secure encryption for the data transmission. The encryption and authentication message transmitted from one node to the construction of the secure wireless sensor networks is required. In order to satisfy the constraint, and security requirements of the sensor network, lightweight encryption and authentication technologies, the light key management technology for the sensor environment it is required. Mandatory sensor network security technology, privacy protection technology subchannel attack prevention, and technology. In order to establish a secure wireless sensor networks encrypt messages sent between the nodes and it is important to authenticate. Lightweight it shall apply the intrusion detection mechanism functions to securely detect the presence of the node on the network. From the sensor node is not involved will determine the authenticity of the terminal authentication technologies, there is a need for a system. Network security technology in an Internet environment objects is a technique for enhancing the security of communication channel between the devices and the sensor to be the center.

Development of Facility Management System for Indoor Space Based on ICBM Technology (ICBM기반 실내 공간 유지관리 시스템 개발)

  • Jung, Yoo-Seok;Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.49-55
    • /
    • 2019
  • An open office or a shared office is emerging as the emphasis on the collaborative and communicative work environments is increasing. In the past, the user maintained the space, but the maintenance of indoor space became difficult because there is no fixed user. Indoor space information can be collected using the ICBM framework system. The facility management can achieve this with data. Therefore, this study proposed a framework based on ICBM (Internet of Things, Cloud, Big Data, and Mobile) for verifying the possibility of a smart facility management system for indoor space. IoT (Internet of Things) technology was used to measure the indoor temperature, humidity, occupancy, and brightness continuously, and provided the data to Web API via WiFi. Data acquired automatically via IoT, existing maintenance data, and spatial information were integrated through the Cloud. Big data collected by sensors were processed as meaningful spatial information for maintenance. Indoor space information and maintenance information can be delivered to the manager through the mobile. Based on the collected data, room occupancy recognition is limited due to a range of ultrasonic wave sensors. On the other hand, brightness represents the space conditions. The difference between lighting on/off, weekday and weekend can be shown. The temperature data and the relative humidity data were collected steadily to evaluate the comfort.

DART: Fast and Efficient Distributed Stream Processing Framework for Internet of Things

  • Choi, Jang-Ho;Park, Junyong;Park, Hwin Dol;Min, Ok-gee
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • With the advent of the Internet-of-Things paradigm, the amount of data production has grown exponentially and the user demand for responsive consumption of data has increased significantly. Herein, we present DART, a fast and lightweight stream processing framework for the IoT environment. Because the DART framework targets a geospatially distributed environment of heterogeneous devices, the framework provides (1) an end-user tool for device registration and application authoring, (2) automatic worker node monitoring and task allocations, and (3) runtime management of user applications with fault tolerance. To maximize performance, the DART framework adopts an actor model in which applications are segmented into microtasks and assigned to an actor following a single responsibility. To prove the feasibility of the proposed framework, we implemented the DART system. We also conducted experiments to show that the system can significantly reduce computing burdens and alleviate network load by utilizing the idle resources of intermediate edge devices.

The Study on the Implementation Approach of MLOps on Federated Learning System (연합학습시스템에서의 MLOps 구현 방안 연구)

  • Hong, Seung-hoo;Lee, KangYoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.97-110
    • /
    • 2022
  • Federated learning is a learning method capable of performing model learning without transmitting learning data. The IoT or healthcare field is sensitive to information leakage as it deals with users' personal information, so a lot of attention should be paid to system design, but when using federated-learning, data does not move from devices where data is collected. Accordingly, many federated-learning implementations have been developed, but detailed research on system design for the development and operation of systems using federated learning is insufficient. This study shows that measures for the life cycle, code version management, model serving, and device monitoring of federated learning are needed to be applied to actual projects and distributed to IoT devices, and we propose a design for a development environment that complements these points. The system proposed in this paper considered uninterrupted model-serving and includes source code and model version management, device state monitoring, and server-client learning schedule management.

Trends in Ultra Low Power Intelligent Edge Semiconductor Technology (초저전력 엣지 지능형반도체 기술 동향)

  • Oh, K.I.;Kim, S.E.;Bae, Y.H.;Park, S.M.;Lee, J.J.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.24-33
    • /
    • 2018
  • In the age of IoT, in which everything is connected to a network, there have been increases in the amount of data traffic, latency, and the risk of personal privacy breaches that conventional cloud computing technology cannot cope with. The idea of edge computing has emerged as a solution to these issues, and furthermore, the concept of ultra-low power edge intelligent semiconductors in which the IoT device itself performs intelligent decisions and processes data has been established. The key elements of this function are an intelligent semiconductor based on artificial intelligence, connectivity for the efficient connection of neurons and synapses, and a large-scale spiking neural network simulation framework for the performance prediction of a neural network. This paper covers the current trends in ultra-low power edge intelligent semiconductors including issues regarding their technology and application.

A Framework for Updating Device Softwares in Cloud-based IoT Environments (클라우드 기반 IoT 환경에서 디바이스 소프트웨어의 갱신을 위한 프레임워크)

  • Hong, Seongjun;Seong, Chaemin;Lim, Kyungshik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.949-952
    • /
    • 2016
  • 클라우드 기반 IoT 환경에서 광범위하게 설치된 디바이스는 보안성 강화 또는 기능 수정을 위해 소프트웨어를 원격에서 갱신할 필요가 있다. 디바이스는 하드웨어 자원과 네트워크 성능이 한정적이기 때문에 갱신 과정에서 발생하는 네트워크 트래픽을 줄여야하며 서비스가 중지되는 시간을 줄이기 위해 갱신 소요시간을 단축시켜야 한다. 이를 해결하기 위해 본 논문에서는 갱신 과정에서 가상화 기술을 이용하여 이미지를 계층화 하고, 캐싱하는 방식을 이용한 소프트웨어 갱신 프레임워크를 제안한다. 이미지 계층화는 소프트웨어와 종속 파일을 담은 이미지 파일의 수정, 변경, 추가된 부분을 새로운 계층으로 생성하고 관리하는 것을 일컫는다. 캐싱은 갱신 과정에서 서버에서 전송한 이미지를 게이트웨이에 저장하고 다른 디바이스가 갱신을 요청하면 저장된 이미지를 서버를 거치지 않고 전송하는 것을 말한다. 이를 적용하여 새로운 계층만 전송하고, 중복된 데이터의 전송을 줄여 네트워크 트래픽 발생량을 줄이고, 설치 파일의 용량을 줄여 갱신 소요시간을 줄인다. 본 논문에서 제안하는 프레임워크는 트래픽 발생량과 갱신 소요시간이 기존 방식에 비해 감소한다.

Objective Material analysis to the device with IoT Framework System

  • Lee, KyuTae;Ki, Jang Geun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.289-296
    • /
    • 2020
  • Software copyright are written in text form of documents and stored as files, so it is easy to expose on an illegal copyright. The IOT framework configuration and service environment are also evaluated in software structure and revealed to replication environments. Illegal copyright can be easily created by intelligently modifying the program code in the framework system. This paper deals with similarity comparison to determine the suspicion of illegal copying. In general, original source code should be provided for similarity comparison on both. However, recently, the suspected developer have refused to provide the source code, and comparative evaluation are performed only with executable code. This study dealt with how to analyze the similarity with the execution code and the circuit configuration and interface state of the system without the original source code. In this paper, we propose a method of analyzing the data of the object without source code and verifying the similarity comparison result through evaluation examples.

A Study on Business Types of IoT-based Smarthome: Based on the Theory of Platform Typology (IoT 기반 스마트홈 비즈니스 유형 연구: 플랫폼유형론을 근간으로)

  • Song, Minzheong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.27-40
    • /
    • 2016
  • This paper aims to analyze the business types of 237 IoT based smart home companies in the world (launched during 1999~2014) which got global investment last few years. For this, the previous literatures trying to analze technology and service types of smart home are searched and the typology of the platform is discussed. Based on it, this research conceptualizes an analysis framework that includes three areas of smart home like home automation, home security, and energy efficiency with the three platform types like product, software, and service. This study concludes that the development of business type for IoT based smart home ecosystem is from the product to software and it can be a platform or not. In current status, there are a few platforms of product and software, but in the device management (16%) and thermostat (11%), companies are persuing more platform like. It is difficult to find the service platform in overall areas, for application based service has a few attractions in the investment market due to the lack of cloud infrastructure and data analytics. The following three are the implication to domestic market: 1) More active offering of API and SDK, 2) more active introduction of wireless Intenet network protocols, and 3) more active interoperability efforts and alliance activities are needed.