• 제목/요약/키워드: IoT Data

검색결과 1,761건 처리시간 0.025초

오토인코더 기반의 IoT 연계 처리를 통한 IoT 데이터 신뢰 기법 (IoT data trust techniques based on auto-encoder through IoT-linked processing)

  • 연용호;정윤수
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.351-357
    • /
    • 2021
  • 분산 환경에서 다양하게 사용되고 있는 IoT 장치는 의료·환경·교통·바이오·공공장소 등 사용 분야가 다양해지면서 IoT 장치에서 송·수신되는 데이터의 중요도가 점점 증가하고 있다. 본 논문에서는 IoT 데이터의 신뢰성을 보장하기 위한 방법으로 수 많은 데이터들을 다양한 중요 속성별로 분류·처리하도록 오토인코더 기반의 IoT 연계 처리 기법을 제안한다. 제안 기법은 오토인코더 기반의 IoT 연계 처리를 위해서 IoT 데이터를 특성별로 블록체인으로 묶어 처리하도록 IoT 데이터별로 상관관계 지수를 사용한다. 제안 기법은 IoT 데이터의 신뢰성을 보장하기 위해서 상관관계 지수에 적용된 블록체인 기반의 n-계층 구조로 확장 운영한다. 또한, 제안 기법은 IoT 데이터의 상관관계 지수에 따라 IoT 수집 데이터에 가중치를 적용하여 IoT 데이터를 선택할 수 있을 뿐만 아니라 실시간으로 IoT 데이터의 무결성을 검증하는 비용을 낮출 수 있다. 제안 기법은 n-계층 구조로 IoT 데이터를 확장할 수 있도록 IoT 데이터의 처리 비용을 유지한다.

AIoT 환경에 최적화된 머신러닝 기반의 IoT 데이터 처리 기법 (IoT data processing techniques based on machine learning optimized for AIoT environments)

  • 정윤수;김용태
    • 산업융합연구
    • /
    • 제20권3호
    • /
    • pp.33-40
    • /
    • 2022
  • 최근 IoT와 연계된 서비스들이 다양한 환경에서 활용되면서 IoT와 인공지능 기술이 융합되고 있다. 그러나, IoT 데이터를 안정적으로 처리하는 기술들이 완벽하게 지원되고 있지 않아 이를 위한 연구가 필요한 상황이다. 본 논문에서는 IoT 데이터를 머신러닝 기반으로 임베디드 벡터를 생성한 후 IoT 데이터를 최적화 할 수 있는 처리 기법을 제안한다. 제안 기법에서는 처리 효율을 위해서 IoT 데이터의 인덱스, 수집 위치(X와 Y축 좌표의 이진값), 그룹 인덱스, 타입, 종류 등을 QR 기반으로 임베디드 벡터화를 수행한다. 또한, IoT 데이터를 비대칭적으로 연계하도록 IoT 데이터 수집 과정에서 로드밸런싱을 수행할 수 있도록 다양한 IoT 장치에서 생성한 데이터를 통합 관리한다. 제안 기법은 비대칭적으로 IoT 데이터를 그룹화할 수 있도록 IoT 데이터를 해쉬기반으로 서로 직교화하도록 처리한다. 또한, IoT 데이터 종류 및 특성에 따라 주기적으로 생성 및 그룹화하기 때문에 IoT 데이터 간 간섭은 최소화할 수 있다. 향후 연구에서는 IoT 서비스를 제공하는 여러 환경에서 제안 기법을 비교 평가할 계획이다.

사물인터넷 환경에서 IoT 데이터 정합성 연구 (A Study On IoT Data Consistency in IoT Environment)

  • 최창원
    • 사물인터넷융복합논문지
    • /
    • 제8권5호
    • /
    • pp.127-132
    • /
    • 2022
  • 사물인터넷의 발달에 따라 IoT 기기에서 처리되는 데이터의 정확성도 중요시되고 있다. 사물인터넷에서 생산되는 데이터는 센서마다 다양한 포맷과 프로토콜을 사용하고 있기에 수집된 센서 데이터에 이상이 발생하면 정규화하고 통합하는 과정에서 데이터 오류로 인해 실패하거나 잘못된 데이터를 구성하게 된다. 사용자의 상황이나 IoT 기기의 이상 증상은 정확하게 판단되지 않기 때문에 사용자 서비스 장애가 발생하거나 실패하는 문제가 발생한다. 본 논문은 IoT 환경에서 발생되는 다양한 형태의 데이터가 IoT 기기의 특성을 반영하여 정상적인 범주 내에서 변화되는지를 수학적 함수로 산출하여 데이터의 정합성을 탐지하는 방법을 제안한다. IoT 데이터의 발생 특성을 파악하기 위해 '기울기 분석'을 활용한 방법과 '선형 회귀 분석'을 활용한 방법을 각각 제시하고 실험하였다. 기울기를 활용하는 방법은 '증가하는 속도'가 다음에 일어나는 현상에 영향을 미치는 IoT 데이터(센서 기기)에 적합하며, 선형 회귀를 활용하는 방법은 선형적으로 데이터가 움직일 때 '선형 회귀 함수로부터의 차이'가 다음에 일어나는 현상에 영향을 미치는 데이터(수도, 전기 계량기)에 적합하였다.

사물인터넷 환경을 위한 하둡 기반 빅데이터 처리 플랫폼 설계 및 구현 (Design and Implementation of Hadoop-based Big-data processing Platform for IoT Environment)

  • 허석렬;이호영;이완직
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.194-202
    • /
    • 2019
  • In the information society represented by the Fourth Industrial Revolution, various types of data and information that are difficult to see are produced, processed, and processed and circulated to enhance the value of existing goods. The IoT(Internet of Things) paradigm will change the appearance of individual life, industry, disaster, safety and public service fields. In order to implement the IoT paradigm, several elements of technology are required. It is necessary that these various elements are efficiently connected to constitute one system as a whole. It is also necessary to collect, provide, transmit, store and analyze IoT data for implementation of IoT platform. We designed and implemented a big data processing IoT platform for IoT service implementation. Proposed platform system is consist of IoT sensing/control device, IoT message protocol, unstructured data server and big data analysis components. For platform testing, fixed IoT devices were implemented as solar power generation modules and mobile IoT devices as modules for table tennis stroke data measurement. The transmission part uses the HTTP and the CoAP, which are based on the Internet. The data server is composed of Hadoop and the big data is analyzed using R. Through the emprical test using fixed and mobile IoT devices we confirmed that proposed IoT platform system normally process and operate big data.

A Framework for Internet of Things (IoT) Data Management

  • Kim, Kyung-Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.159-166
    • /
    • 2019
  • The collection and manipulation of Internet of Things (IoT) data is increasing at a fast pace and its importance is recognized in every sector of our society. For efficient utilization of IoT data, the vast and varied IoT data needs to be reliable and meaningful. In this paper, we propose an IoT framework to realize this need. The IoT framework is based on a four layer IoT architecture onto which context aware computing technology is applied. If the collected IoT data is unreliable it cannot be used for its intended purpose and the whole service using the data must be abandoned. In this paper, we include techniques to remove uncertainty in the early stage of IoT data capture and collection resulting in reliable data. Since the data coming out of the various IoT devices have different formats, it is important to convert them into a standard format before further processing, We propose the RDF format to be the standard format for all IoT data. In addition, it is not feasible to process all captured Iot data from the sensor devices. In order to decide which data to process and understand, we propose to use contexts and reasoning based on these contexts. For reasoning, we propose to use standard AI and statistical techniques. We also propose an experiment environment that can be used to develop an IoT application to realize the IoT framework.

온톨로지 기반 상황인지 IoT 데이터 관리 시스템 설계 (Design of Context Aware IoT Data Management System based on Ontology)

  • 최강임;최영근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.331-332
    • /
    • 2016
  • IoT 환경에서는 대용량 IoT 데이터들이 다양한 IoT 디바이스들에서 수집된다. 대용량 IoT 데이터로 인해 사용자 요구사항에 맞는 데이터 처리와 제공을 위한 서비스가 필요하다. 이에 상황 정보를 이용한 온톨로지 기반 IoT 데이터 관리 시스템 설계를 제안한다.

  • PDF

에지 네트워크 환경을 위한 딥 러닝 기반의 효율적인 IoT 데이터 처리 기법 (Efficient IoT data processing techniques based on deep learning for Edge Network Environments)

  • 정윤수
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.325-331
    • /
    • 2022
  • 에지 네트워크 환경에서 IoT 장치가 다양하게 활용되면서 IoT 장치에서 수집되는 정보들을 여러 응용 분야에서 활용하는 연구들이 다양하게 진행되고 있다. 그러나, 네트워크 환경(간섭, 전파방해 등)에 따라 수집되는 IoT 데이터들이 누락 또는 오류가 발생하는 상황이 빈번해지면서 정확한 IoT 데이터들을 바로 적용하기가 쉽지 않은 상황이다. 본 논문에서는 에지 네트워크 환경에서 수집되는 IoT 데이터들의 오류를 줄이기 위해서 IoT 데이터의 서명 값을 랜덤하게 생성하여 비트 형태로 보안 정보(Security Information, SI) 값만을 IoT 데이터들에 각각 할당함으로써 IoT 데이터의 신뢰성을 보장하는 관리 기법을 제안한다. 제안 기법은 IoT 장치로부터 수집되는 데이터들을 비대칭적으로 서로 연계 처리하도록 다중 해쉬 체인을 적용하여 IoT 데이터를 블록체인으로 묶는다. 이때, 블록 체인화된 IoT 데이터들은 딥러닝 기반으로 상관관계 지수에 따라 가중치를 적용한 확률 함수를 사용한다. 또한, IoT 데이터의 무결성과 처리 비용을 낮추기 위해서 제안 기법은 그룹화된 IoT 데이터를 n-계층 구조로 확장 운영 가능하다.

무중단 IoT 서비스 제공을 위한 IoT 로밍서비스 (IoT Roaming Service for Seamless IoT Service)

  • 안정욱;이병문
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1258-1269
    • /
    • 2020
  • The IoT(Internet of Things) service provides users with valuable services by collecting and analyzing data using Internet-connected IoT devices. Currently, IoT service platforms are accomplished by using edge computing to reduce the delay time required to collect data from IoT devices. However, if a user moves to another network with IoT device, the connection will be lost and IoT service will be suspended. To solve this problem, we proposes a service that automatically roaming IoT service when IoT device makes move. IoT roaming service provides a device automatic tracking management technique designed to continue receiving IoT services even if users move to other networks. To check if the proposed roaming service was effective, we implemented IoT roaming service and measured the data transfer time while move between networks along with devices while using IoT service. As a result, the average data transfer time was 124.62ms, and the average service interrupt time was 812.12ms. with this result, we can assume that the user could feel service interruption time very shortly and it will not affect the service experience. with IoT roaming service, we expect that it will present a method that stably providing IoT services even if user moves networks.

딥 러닝 기반 스마트 IoT 홈 데이터 분석 및 기기 제어 알고리즘 (Smart IoT Home Data Analysis and Device Control Algorithm Using Deep Learning)

  • 이상형;이해연
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권4호
    • /
    • pp.103-110
    • /
    • 2018
  • Internet of Things(IoT) 기술이 발전하면서 다양한 IoT 기기들을 이용하여 사용자의 편의성을 높이기 위한 서비스가 늘어나고 있다. 또한, IoT 센서가 다양해지고 가격이 낮아지고 있어서 다양한 데이터를 수집 및 활용하여 서비스를 제공하는 사업자도 증가하는 추세이다. 스마트 IoT 홈 시스템은 IoT 기기를 이용하여 사용자의 편의성을 향상하는 대표적인 활용 사례이다. 본 논문에서는 스마트 IoT 홈 시스템의 사용자 편의성을 향상하기 위하여 데이터를 분석하여 연관 기기의 제어를 위한 방법을 제안한다. 스마트 IoT 홈 시스템의 센서에서 수집한 내부 환경 측정 데이터, 기기 제어 엑츄에이터에서 수집한 데이터 및 사용자의 판단 데이터를 학습하여 현재 홈 내부 상태를 분석하고 기기 제어 방법을 결정한다. 특히 기존 기술들과 다르게 최신 딥 러닝 기반의 심층 신경망을 도입하여 데이터를 분석하여 홈 내부 상태를 판단하고 최적의 홈 내부 환경 유지를 위한 정보를 제공한다. 실험에서는 실제 장기간 측정한 데이터와 추론 결과를 비교하여 제안한 방법의 판별 성능에 대한 분석을 수행하였다.

웹 기반 개방형 IoT 환경에서 실시간 데이터 전송을 위한 시스템 설계 (System Design for Real-Time Data Transmission in Web-based Open IoT System)

  • 표경수;박진태;문일영
    • 한국항행학회논문지
    • /
    • 제20권6호
    • /
    • pp.562-567
    • /
    • 2016
  • 전 세계적으로 인터넷의 발전과 스마트 디바이스의 보급이 급격하게 증가하면서 IoT (internet of things)가 주목받고 있다. IoT가 일상생활에 접목되면서 IoT 시장은 방대해지고 있다. 그래서 전문가들은 앞으로 IoT 디바이스가 10년 내에 약 1조대 이상으로 증가할 것으로 전망하고 있다. IoT와 관련된 기술도 꾸준히 발전되고 있으며, 여러 분야에서 IoT 발전을 위한 연구가 진행되고 있다. 하지만, IoT 서비스를 출시하는 업체에서는 다른 플랫폼과 데이터를 상호작용하지 않아 사일로 현상이라는 장애물에 봉착해 큰 시장으로 성장하는데 제한되고 있다. 이를 해결하기 위해 웹 기술이 주목받고 있다. 웹 기술을 이용하면 플랫폼에 상관없이 데이터를 상호 작용할 수 있고, 그 데이터를 이용하여 다양한 서비스를 개발할 수 있을 뿐만 아니라 개발자 입장에서도 불필요한 비용을 줄일 수 있다. 따라서 본 논문에서는 IoT 플랫폼에 독립적으로 데이터를 실시간 전송할 수 있는 웹 기반의 개방형 IoT 시스템을 연구하였으며, 각 IoT 플랫폼 간 데이터를 전송할 수 있는 시스템을 구현하였다.