• Title/Summary/Keyword: IoT Cloud

Search Result 396, Processing Time 0.028 seconds

Role Based Smart Health Service Access Control in F2C environment (F2C 환경에서 역할 기반 스마트 헬스 서비스 접근 제어)

  • Mi Sun Kim;Kyung Woo Park;Jae Hyun Seo
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.27-42
    • /
    • 2023
  • The development of cloud services and IoT technology has radically changed the cloud environment, and has evolved into a new concept called fog computing and F2C (fog-to-cloud). However, as heterogeneous cloud/fog layers are integrated, problems of access control and security management for end users and edge devices may occur. In this paper, an F2C-based IoT smart health monitoring system architecture was designed to operate a medical information service that can quickly respond to medical emergencies. In addition, a role-based service access control technology was proposed to enhance the security of user's personal health information and sensor information during service interoperability. Through simulation, it was shown that role-based access control is achieved by sharing role registration and user role token issuance information through blockchain. End users can receive services from the device with the fastest response time, and by performing service access control according to roles, direct access to data can be minimized and security for personal information can be enhanced.

A Cloud-based Big Data System for Performance Comparison of Edge Computing (Edge Computing 성능 비교를 위한 Cloud 기반 빅데이터 시스템 구축 방안)

  • Lim, Hwan-Hee;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.5-6
    • /
    • 2019
  • Edge Computing에서 발생하는 데이터 분석에 대한 알고리즘의 성능 평가나 검증은 필수적이다. 이러한 평가 및 검증을 위해서는 비교 가능한 데이터가 필요하다. 본 논문에서는 Edge Computing에서 발생하는 데이터에 대한 분석 결과 및 Computing Resource에 대한 성능평가를 위해 Cloud 기반의 빅 데이터 분석시스템을 구축한다. Edge Computing 비교분석 빅 데이터 시스템은 실제 IoT 노드에서 Edge Computing을 수행할 때와 유사한 환경을 Cloud 상에 구축하고 연구되는 Edge Computing 알고리즘을 Data Analysis Cluster Container에 탑재해 분석을 시행한다. 그리고 분석 결과와 Computing Resource 사용률 데이터를 기존 IoT 노드 Edge Computing 데이터와 비교하여 개선점을 도출하는 것이 본 논문의 목표이다.

  • PDF

Security and Privacy Issues of Fog Computing (포그 컴퓨팅 환경에서의 보안 및 프라이버시 이슈에 대한 연구)

  • Nam, Hyun-Jae;Choi, Ho-Yeol;Shin, Hyung-June;Kwon, Hyun-Soo;Jeong, Jong-Min;Hahn, Chang-Hee;Hur, Jun-Beom
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.257-267
    • /
    • 2017
  • With the development of IoT (Internet of Things) technology, the application area has been diversified and the number of users using this service also has increased greatly. Real time big data generated by many IoT devices is no longer suitable for processing in a cloud computing environment. To solve this issue, fog computing is suggested which minimizes response time and makes real time processing suitable. However, security requirement for new paradigm called fog computing is not established until now. In this paper, we define models for fog computing, and the security requirements for the defined model.

A Distributed Fog-based Access Control Architecture for IoT

  • Alnefaie, Seham;Cherif, Asma;Alshehri, Suhair
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4545-4566
    • /
    • 2021
  • The evolution of IoT technology is having a significant impact on people's lives. Almost all areas of people's lives are benefiting from increased productivity and simplification made possible by this trending technology. On the downside, however, the application of IoT technology is posing some security challenges, among them, unauthorized access to IoT devices. This paper presents an Attribute-based Access Control Fog architecture that aims to achieve effective distribution, increase availability and decrease latency. In the proposed architecture, the main functional points of the Attribute-based Access Control are distributed to provide policy decision and policy information mechanisms in fog nodes, locating these functions near end nodes. To evaluate the proposed architecture, an access control engine based on the Attribute-based Access Control was built using the Balana library and simulated using EdgeCloudSim to compare it to the traditional cloud-based architecture. The experiments show that the fog-based architecture provides robust results in terms of reducing latency in making access decisions.

Novus-io: An Internet of Things Platform for Academic Projects

  • Lozoya, Camilo;Aguilar-Gonzalez, Alberto;Favela-Contreras, Antonio;Zamora, Arturo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5634-5653
    • /
    • 2018
  • Internet of things (IoT) is based on a global dynamic information network with cloud services where a great number of devices (things) exchange data to provide added-value services and products. There are several commercial and open source IoT platforms available in the market to connect devices to internet; however, they have cost and operational constraints that make them not suitable for academic projects. In this work, an IoT platform, known as Novus-io, is introduced in order to support academic projects for undergraduate students. With this platform and proper training, undergraduate students from different majors (not only from information technology and electronics) are capable to upgrade their school projects with IoT functionalities. The objective of this approach is to provide to any undergraduate student skills and knowledge on IoT, so they will be prepared, in their imminent step toward professionalism, to understand the relevance of digital services in today's world.

A Virtual File System for IoT Service Platform Based on Linux FUSE (IoT 서비스 플랫폼을 위한 리눅스 FUSE 기반 가상 파일 시스템)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.139-150
    • /
    • 2015
  • The major components of IoT(Internet of Things) environment are IoT devices rather than the conventional desktop computers. One of the intrinsic characteristics of IoT devices is diversity in view of data type and data access method. In addition, IoT devices usually deal with real-time data. In order to use such IoT data for internal business or cloud services, an IoT platform capable of easy domain management and consistent data access interface is required. This paper proposes a Linux FUSE-based virtual file system connecting IoT devices on POSIX file system view. It is possible to manage IoT domain with the native Linux utilities such as mkdir, mknod, ls and find in the file system. Also, the file system makes it possible to access or control IoT devices through POSIX interface such as open(), read(), write() or close() without any separate APIs or utilities. A test result shows that the management performance of the file system is lower than that of linux file system negligibly.

Suggestion to Use Unmanned Vehicle with IoT about LoRa Network (LoRa망을 이용한 무인이동체 IoT 활용법 제안)

  • Lee, Jae-Ung;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1691-1697
    • /
    • 2018
  • There has been a steady study of unmanned vehicle. So far, continuous research has brought news of the commercialization of unmanned vehicle. In addition, it has been applied in a variety of fields with another industry. A lot of research has been done, too, to apply inert driving indoors. Using LoRa network, which is a network dedicated to IoT, unmanned vehicle control system that is applied to LoRa network from a small space, or from an office hospital to a factory, is installed to increase efficiency when the performs special tasks. This paper presents solutions to a variety of problems by using LoRa network, which is dedicated to IoT, to recognize an unmanned vehicle as a single object, to communicate with surrounding objects, and to receive information necessary for driving indoors from a cloud server.

Analysis of Cloud Service Providers

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.315-320
    • /
    • 2021
  • Currently, cloud computing is being used as a technology that greatly changes the IT field. For many businesses, many cloud services are available in the form of custom, reliable, and cost-effective web applications. Most cloud service providers provide functions such as IoT, machine learning, AI services, blockchain, AR & VR, mobile services, and containers in addition to basic cloud services that support the scalability of processors, memory, and storage. In this paper, we will look at the most used cloud service providers and compare the services provided by the cloud service providers.

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard (제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델)

  • Yun, Seongjin;Kim, Hanjin;Shin, Hyeonyeop;Chin, Hoe Seung;Kim, Won-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.41-56
    • /
    • 2019
  • Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

IoT Based Real-Time Indoor Air Quality Monitoring Platform for a Ventilation System (청정환기장치 최적제어를 위한 IoT 기반 실시간 공기질 모니터링 플랫폼 구현)

  • Uprety, Sudan Prasad;Kim, Yoosin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.95-104
    • /
    • 2020
  • In this paper, we propose the real time indoor air quality monitoring and controlling platform on cloud using IoT sensor data such as PM10, PM2.5, CO2, VOCs, temperature, and humidity which has direct or indirect impact to indoor air quality. The system is connected to air ventilator to manage and optimize the indoor air quality. The proposed system has three main parts; First, IoT data collection service to measure, and collect indoor air quality in real time from IoT sensor network, Second, Big data processing pipeline to process and store the collected data on cloud platform and Finally, Big data analysis and visualization service to give real time insight of indoor air quality on mobile and web application. For the implication of the proposed system, IoT sensor kits are installed on three different public day care center where the indoor pollution can cause serious impact to the health and education of growing kids. Analyzed results are visualized on mobile and web application. The impact of ventilation system to indoor air quality is tested statistically and the result shows the proper optimization of indoor air quality.