• Title/Summary/Keyword: IoT 클라우드

Search Result 283, Processing Time 0.023 seconds

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Relative Importance Analysis of Management Level Diagnosis for Consignee's Personal Information Protection (수탁사 개인정보 관리 수준 점검 항목의 상대적 중요도 분석)

  • Im, DongSung;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 2018
  • Recently ICT, new technologies such as IoT, Cloud, and Artificial Intelligence are changing the information society explosively. But personal information leakage incidents of consignee's company are increasing more and more because of the expansion of consignment business and the latest threats such as Ransomware and APT. Therefore, in order to strengthen the security of consignee's company, this study derived the checklists through the analysis of the status such as the feature of consignment and the security standard management system and precedent research. It also analyzed laws related to consignment. Finally we found out the relative importance of checklists after it was applied to proposed AHP(Analytic Hierarchy Process) Model. Relative importance was ranked as establishment of an internal administration plan, privacy cryptography, life cycle, access authority management and so on. The purpose of this study is to reduce the risk of leakage of customer information and improve the level of personal information protection management of the consignee by deriving the check items required in handling personal information of consignee and demonstrating the model. If the inspection activities are performed considering the relative importance of the checklist items, the effectiveness of the input time and cost will be enhanced.

Efficient QoS Policy Implementation Using DSCP Redefinition: Towards Network Load Balancing (DSCP 재정의를 통한 효율적인 QoS 정책 구현: 네트워크 부하 분산을 위해)

  • Hanwoo Lee;Suhwan Kim;Gunwoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.715-720
    • /
    • 2023
  • The military is driving innovative changes such as AI, cloud computing, and drone operation through the Fourth Industrial Revolution. It is expected that such changes will lead to a rapid increase in the demand for information exchange requirements, reaching all lower-ranking soldiers, as networking based on IoT occurs. The flow of such information must ensure efficient information distribution through various infrastructures such as ground networks, stationary satellites, and low-earth orbit small communication satellites, and the demand for information exchange that is distributed through them must be appropriately dispersed. In this study, we redefined the DSCP, which is closely related to QoS (Quality of Service) in information dissemination, into 11 categories and performed research to map each cluster group identified by cluster analysis to the defense "information exchange requirement list" on a one-to-one basis. The purpose of the research is to ensure efficient information dissemination within a multi-layer integrated network (ground network, stationary satellite network, low-earth orbit small communication satellite network) with limited bandwidth by re-establishing QoS policies that prioritize important information exchange requirements so that they are routed in priority. In this paper, we evaluated how well the information exchange requirement lists classified by cluster analysis were assigned to DSCP through M&S, and confirmed that reclassifying DSCP can lead to more efficient information distribution in a network environment with limited bandwidth.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.

Worker-Driven Service Development Tool for Smart Factory

  • Lee, Jin-Heung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.143-150
    • /
    • 2020
  • Recently, many companies are interested in smart factory services. Because various smart factory services are provided by the combination of mobile devices, cloud computing, and IoT services. However, many workers turn away from these systems because most of them are not implemented from the worker's point of view. To solve this, we implemented a development tool that allows field workers to produce their own services so that workers can easily create smart factory services. Manufacturing data is collected in real time from sensors which are connected to manufacturing facilities and stored within smart factory platforms. Implemented development tools can produce services such as monitoring, processing, analysis, and control of manufacturing data in drag-and-drop. The implemented system is effective for small manufacturing companies because of their environment: making various services quickly according to the company's purpose. In addition, it is assumed that this also will help workers' improve operation skills on running smart factories and fostering smart factory capable personnel.

Development of Contents on the Marine Meteorology Service by Meteorology and Climate Big Data (기상기후 빅데이터를 활용한 해양기상서비스 콘텐츠 개발)

  • Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.125-138
    • /
    • 2016
  • Currently, there is increasing demand for weather information, however, providing meteorology and climate information is limited. In order to improve them, supporting the meteorology and climate big data platform use and training the meteorology and climate big data specialist who meet the needs of government, public agencies and corporate, are required. Meteorology and climate big data requires high-value usable service in variety fields, and it should be provided personalized service of industry-specific type for the service extension and new content development. To provide personalized service, it is essential to build the collaboration ecosystem at the national level. Building the collaboration ecosystem environment, convergence of marine policy and climate policy, convergence of oceanography and meteorology and convergence of R&D basic research and applied research are required. Since then, demand analysis, production sharing information, unification are able to build the collaboration ecosystem.

Development of Fine Dust Monitoring System Using Small Edge Computing (소형 엣지컴퓨팅을 이용한 미세먼지 모니터링 시스템 개발)

  • Hwang, KiHwan
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.59-69
    • /
    • 2020
  • Recently, the seriousness of ultrafine dust and fine dust has emerged as a national disaster, but small and medium-sized cities in provincial areas lack fine dust monitoring stations compared to their area, making it difficult to manage fine dust. Although the computing resources for collecting and processing fine dust data are not large, it is necessary to utilize cloud and private and public data to share data. In this paper, we proposed a small edge computing system that can measure fine dust, ultrafine dust and temperature and humidity and process it to provide real-time control of fine dust and service to the public. Collecting fine dust data and using public and private data to service fine dust ratings is efficient to handle with edge computing using raspberry pie because the amount of data is not large and the processing load is not large. For the experiment, the experiment system was constructed using three sensors, raspberry pie and Thinkspeak, and the fine dust measurement was conducted in northern part of kyongbuk region. The results of the experiment confirmed the measured fine dust measurement results over time based on the GIS data of the private sector.

  • PDF

Design and Implementation of Multi-Cloud Service Common Platform (멀티 클라우드 서비스 공통 플랫폼 설계 및 구현)

  • Kim, Sooyoung;Kim, Byoungseob;Son, Seokho;Seo, Jihoon;Kim, Yunkon;Kang, Dongjae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.75-94
    • /
    • 2021
  • The 4th industrial revolution needs a fusion of artificial intelligence, robotics, the Internet of Things (IoT), edge computing, and other technologies. For the fusion of technologies, cloud computing technology can provide flexible and high-performance computing resources so that cloud computing can be the foundation technology of new emerging services. The emerging services become a global-scale, and require much higher performance, availability, and reliability. Public cloud providers already provide global-scale services. However, their services, costs, performance, and policies are different. Enterprises/ developers to come out with a new inter-operable service are experiencing vendor lock-in problems. Therefore, multi-cloud technology that federatively resolves the limitations of single cloud providers is required. We propose a software platform, denoted as Cloud-Barista. Cloud-Barista is a multi-cloud service common platform for federating multiple clouds. It makes multiple cloud services as a single service. We explain the functional architecture of the proposed platform that consists of several frameworks, and then discuss the main design and implementation issues of each framework. To verify the feasibility of our proposal, we show a demonstration which is to create 18 virtual machines on several cloud providers, combine them as a single resource, and manage it.